This study presents a self-supervised Bayesian Neural Network (BNN) framework using air-borne Acoustic Emission (AE) to identify different Laser Powder Bed Fusion (LPBF) process regimes such as Lack of Fusion, conduction mode, and keyhole without ground-tr ...
The goal of this paper is to characterize function distributions that general neural networks trained by descent algorithms (GD/SGD), can or cannot learn in polytime. The results are: (1) The paradigm of general neural networks trained by SGD is poly-time ...
Crop maps are crucial for agricultural monitoring and food management and can additionally support domain-specific applications, such as setting cold supply chain infrastructure in developing countries. Machine learning (ML) models, combined with freely-av ...
As it has become easier and cheaper to collect big datasets in the last few decades, designing efficient and low-cost algorithms for these datasets has attracted unprecedented attention. However, in most applications, even storing datasets as acquired has ...
In this paper, the recommended implementation of the post-quantum key exchange SIKE for Cortex-M4 is attacked through power analysis with a single trace by clustering with the k-means algorithm the power samples of all the invocations of the elliptic curve ...
Effective fall-detection and classification systems are vital in mitigating severe medical and economical consequences of falls to people in the fall risk groups. One class of such systems is based on wearable sensors. While there is a vast amount of acade ...
Objective. Bioelectronic medicine is an emerging field that aims at developing closed-loop neuromodulation protocols for the autonomic nervous system (ANS) to treat a wide range of disorders. When designing a closed-loop protocol for real time modulation o ...
In the current deep learning paradigm, the amount and quality of training data are as critical as the network architecture and its training details. However, collecting, processing, and annotating real data at scale is difficult, expensive, and time-consum ...
In high dimension, low sample size (HDLSS) settings, classifiers based on Euclidean distances like the nearest neighbor classifier and the average distance classifier perform quite poorly if differences between locations of the underlying populations get m ...
Testing mutual independence among several random vectors of arbitrary dimensions is a challenging problem in Statistics, and it has gained considerable interest in recent years. In this article, we propose some nonparametric tests based on different notion ...