Concept

High throughput biology

Résumé
High throughput biology (or high throughput cell biology) is the use of automation equipment with classical cell biology techniques to address biological questions that are otherwise unattainable using conventional methods. It may incorporate techniques from optics, chemistry, biology or to permit rapid, highly parallel research into how cells function, interact with each other and how pathogens exploit them in disease. High throughput cell biology has many definitions, but is most commonly defined by the search for active compounds in natural materials like in medicinal plants. This is also known as high throughput screening (HTS) and is how most drug discoveries are made today, many cancer drugs, antibiotics, or viral antagonists have been discovered using HTS. The process of HTS also tests substances for potentially harmful chemicals that could be potential human health risks. HTS generally involves hundreds of samples of cells with the model disease and hundreds of different compounds being tested from a specific source. Most often a computer is used to determine when a compound of interest has a desired or interesting effect on the cell samples. Using this method has contributed to the discovery of the drug Sorafenib (Nexavar). Sorafenib is used as medication to treat multiple types of cancers, including renal cell carcinoma (RCC, cancer in the kidneys), hepatocellular carcinoma (liver cancer), and thyroid cancer. It helps stop cancer cells from reproducing by blocking the abnormal proteins present. In 1994, high throughput screening for this particular drug was completed. It was initially discovered by Bayer Pharmaceuticals in 2001. By using a RAF kinase biochemical assay, 200,000 compounds were screened from medicinal chemistry directed synthesis or combinatorial libraries to identify active molecules against activeRAF kinase. Following three trials of testing, it was found to have anti-angiogenic effects on the cancers, which stops the process of creating new blood vessels in the body.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.