Explore l'algorithme Shannon-Fano pour une compression efficace des données et ses applications dans les techniques de compression sans perte et avec perte.
Explore les techniques de compression des modèles dans les NLP, en discutant de la taille, de la quantification, de la factorisation du poids, de la distillation des connaissances et des mécanismes d'attention.
Explore les principes de compression d'images, en se concentrant sur JPEG 2000, couvrant le codage basé sur la transformation, la quantification, le codage entropie, la région d'intérêt, la résilience aux erreurs et les implémentations logicielles.
Explore la compression d'image à travers diverses approches telles que la compression de pixel et de niveau de bloc, Discret Cosine Transform, quantification et codage entropie.
Explore l'évolution des normes et techniques de compression vidéo, de H.261 à VVC, en mettant l'accent sur les progrès dans l'efficacité de compression et la qualité vidéo.