DH-406: Machine learning for DHThis course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
CS-401: Applied data analysisThis course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
PHYS-512: Statistical physics of computationThe students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
EE-613: Machine Learning for EngineersThe objective of this course is to give an overview of machine learning techniques used for real-world applications, and to teach how to implement and use them in practice. Laboratories will be done i
EE-311: Fundamentals of machine learningCe cours présente une vue générale des techniques d'apprentissage automatique, passant en revue les algorithmes, le formalisme théorique et les protocoles expérimentaux.
PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
CS-423: Distributed information systemsThis course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
CS-433: Machine learningMachine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr