MonetDB is an open-source column-oriented relational database management system (RDBMS) originally developed at the Centrum Wiskunde & Informatica (CWI) in the Netherlands.
It is designed to provide high performance on complex queries against large databases, such as combining tables with hundreds of columns and millions of rows.
MonetDB has been applied in high-performance applications for online analytical processing, data mining, geographic information system (GIS), Resource Description Framework (RDF), text retrieval and sequence alignment processing.
Data mining projects in the 1990s required improved analytical database support. This resulted in a CWI spin-off called Data Distilleries, which used early MonetDB implementations in its analytical suite. Data Distilleries eventually became a subsidiary of SPSS in 2003, which in turn was acquired by IBM in 2009.
MonetDB in its current form was first created in 2002 by doctoral student Peter Boncz and professor Martin L. Kersten as part of the 1990s' MAGNUM research project at University of Amsterdam. It was initially called simply Monet, after the French impressionist painter Claude Monet. The first version under an open-source software license (a modified version of the Mozilla Public License) was released on September 30, 2004. When MonetDB version 4 was released into the open-source domain, many extensions to the code base were added by the MonetDB/CWI team, including a new SQL front end, supporting the SQL:2003 standard.
MonetDB introduced innovations in all layers of the DBMS: a storage model based on vertical fragmentation, a modern CPU-tuned query execution architecture that often gave MonetDB a speed advantage over the same algorithm over a typical interpreter-based RDBMS. It was one of the first database systems to tune query optimization for CPU caches. MonetDB includes automatic and self-tuning indexes, run-time query optimization, and a modular software architecture.
By 2008, a follow-on project called X100 (MonetDB/X100) started, which evolved into the VectorWise technology.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Une base de données spatiales est une base de données optimisée pour stocker et interroger des données reliées à des objets référencés géographiquement, y compris des points, les lignes et des polygones. Alors que les bases de données classiques peuvent comprendre différents types de données numériques et caractères, des fonctions additionnelles ont besoin d'être ajoutées pour traiter les types de données spatiales. Celles-ci sont typiquement appelées géométrie ou caractère.
The following tables compare general and technical information for a number of relational database management systems. Please see the individual products' articles for further information. Unless otherwise specified in footnotes, comparisons are based on the stable versions without any add-ons, extensions or external programs. The operating systems that the RDBMSes can run on. Information about what fundamental RDBMS features are implemented natively. Note (1): Currently only supports read uncommited transaction isolation.
Ingres ou Actian est un système de gestion de base de données (SGBD) relationnel. Ingres signifie : INtelligent Graphic RElational System. Son concepteur, Michael Stonebraker, décida de recommencer le développement à partir de zéro en 1985, mais en continuant à développer les idées d’Ingres. Il se lança dans un projet post-Ingres, qui fut d'abord nommé Postgres, puis, à partir de 1995, PostgreSQL. Détenu entre 1994 et 2005 par Computer Associates, et revendu depuis à un fonds d'investissement, Ingres est devenu un logiciel libre en 2004 ; sa licence est depuis lors la licence publique générale GNU.
Advances in remote sensing technologies have allowed us to send an ever-increasing number of satellites in orbit around Earth. As a result, Earth Observation data archives have been constantly increasing in size in the last few years, and have become a val ...
Elsevier2014
, ,
Modern application development addresses increasingly specialized problems using domain-specific utilities, such as Optical Code Recognition and standalone statistical tools. The diversity of tooling, combined with the ever-growing volume of data, requires ...
2022
,
Query optimizers depend heavily on statistics representing column distributions to create efficient query plans. In many cases, though, statistics are outdated or non-existent, and the process of refreshing statistics is very expensive, especially for ad-h ...