En chimie numérique, la 'contamination de spin' est le mélange artificiel de plusieurs états de spins électroniques. Ce mélange peut se produire lorsqu'une fonction d'onde basée sur une fonction orbitalaire approchée est représentée sous une forme non restreinte - c'est-à-dire que les parties spatiales des spinorbitales α et β peuvent différer. Les fonctions d'onde approchées avec un fort degré de contamination de spin ne sont pas souhaitées. En particulier, elles ne sont pas fonctions propres de l'opérateur total de spin au carré, Ŝ, mais peuvent être formellement développées en termes d'états de spin pur de multiplicités supérieures (les contaminants). Dans le cadre de la théorie Hartree-Fock, la fonction d'onde est approchée par un déterminant de Slater de spinorbitales. Dans un système à couche ouverte, l'approximation par champ moyen de cette même théorie induit des équations différentes pour les orbitales α et β. Par conséquent, il y a deux approches pouvant être choisies - soit afin de forcer une double occupation des orbitales de plus basse énergie en contraignant les distributions spatiales de α et β à être les mêmes (méthode de Hartree-Fock restreinte pour couche ouverte ROHF) ou laissées totalement libres variationnellement (méthode de Hartree-Fock non restreinte UHF). En général, une fonction d'onde de Hartree-Fock à N électrons est composée de Nα spinorbitales α et de Nβ spinorbitales β qui peuvent être écrites : où est l'opérateur d'antisymétrie. Cette fonction d'onde est une fonction propre de l'opérateur de projection de spin total, Ŝz, avec pour valeur propre (Nα − Nβ)/2 (si l'on postule que Nα ≥ Nβ). Pour une fonction d'onde ROHF, les 2Nβ premières spinorbitales sont obligées d'avoir la même distribution spatiale. Cette contrainte n'existe pas dans une approche UHF. L'opérateur de spin total au carré commutant avec le hamiltonien moléculaire non-relativiste, il est souhaitable que la fonction d'onde approchée soit une fonction propre de Ŝ.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.