Résumé
Microwave spectroscopy is the spectroscopy method that employs microwaves, i.e. electromagnetic radiation at GHz frequencies, for the study of matter. The ammonia molecule NH3 is shaped like a pyramid 0.38 Å in height, with an equilateral triangle of hydrogens forming the base.The nitrogen situated on the axis has two equivalent equilibrium positions above and below the triangle of hydrogens, and this raises the possibility of the nitrogen tunneling up and down, through the plane of the H-atoms. In 1932 Dennison et al. ... analyzed the vibrational energy of this molecule and concluded that the vibrational energy would be split into pairs by the presence of these two equilibrium positions. The next year Wright and Randall observed ... a splitting of 0.67 cm–1 in far infrared lines, corresponding to ν = 20 GHz, the value predicted by theory.In 1934 Cleeton and Williams ... constructed a grating echelette spectrometer in order to measure this splitting directly, thereby beginning the field of microwave spectroscopy. They observed a somewhat asymmetric absorption line with a maximum at 24 GHz and a full width at half height of 12 GHz. Rotational spectroscopy In the field of molecular physics, microwave spectroscopy is commonly used to probe the rotation of molecules. In the field of condensed matter physics, microwave spectroscopy is used to detect dynamic phenomena of either charges or spins at GHz frequencies (corresponding to nanosecond time scales) and energy scales in the μeV regime. Matching to these energy scales, microwave spectroscopy on solids is often performed as a function of temperature (down to cryogenic regimes of a few K or even lower) and/or magnetic field (with fields up to several T). Spectroscopy traditionally considers the frequency-dependent response of materials, and in the study of dielectrics microwave spectroscopy often covers a large frequency range. In contrast, for conductive samples as well as for magnetic resonance, experiments at a fixed frequency are common (using a highly sensitive microwave resonator), but frequency-dependent measurements are also possible.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
CH-343: Spectroscopy
Introduction into optical spectroscopy of molecules
Séances de cours associées (13)
Ondes de spin micro-ondes à l'échelle nanométrique: équation de Landau-Lifshitz-Gilbert
Explore la dynamique de l'aimantation, les ondes de spin en couches minces, la spectroscopie GHz et les futures technologies magnétiques.
Spectroscopie : Classification moléculaire et niveaux d'énergie
Couvre la classification des molécules en fonction de leurs moments d'inertie et de leur niveau d'énergie.
Fondements de la spectroscopie
Couvre les fondamentaux de la spectroscopie, y compris la théorie des couleurs et les techniques spectroscopiques.
Afficher plus
Publications associées (54)
Concepts associés (1)
Spectroscopie
La spectroscopie, ou spectrométrie, est l'étude expérimentale du spectre d'un phénomène physique, c'est-à-dire de sa décomposition sur une échelle d'énergie, ou toute autre grandeur se ramenant à une énergie (fréquence, longueur d'onde). Historiquement, ce terme s'appliquait à la décomposition, par exemple par un prisme, de la lumière visible émise (spectrométrie d'émission) ou absorbée (spectrométrie d'absorption) par l'objet à étudier.