Antarctica has unique areas that expose blue ice, which contrast to most of the continent (~98%) that is covered by snow. Some of these blue ice areas (BIAs) contain meteorite concentrations and (very) old ice, making them very valuable for understanding o ...
Identifying extant materials that act as compositional proxies for Earth is key to understanding its accretion. Copper and sulfur are both moderately volatile elements; however, they display different geochemical behavior (e.g., phase affinities). Thus, in ...
The differentiation of Earth into a metallic core and silicate mantle left its signature on the chemical and isotopic composition of the bulk silicate Earth (BSE). This is seen in the depletion of siderophile (metal-loving) relative to lithophile (rock-lov ...
Gallium concentration (normalized to CI chondrites) in the mantle is at the same level as that of lithophile elements with similar volatility, implying that there must be little to no gallium in Earth's core. Metal-silicate partitioning experiments, howeve ...
Thulium is a heavy rare earth element (REE) whose geochemical behavior is intermediate between Er and Yb, and that is not expected to be decoupled from these elements during accretion of planetary bodies and geological processes. However, irregularities in ...
Two petrographic settings of carbonaceous components, mainly filling open fractures and occasionally enclosed in shock-melt veins, were found in the recently fallen Tissint Martian meteorite. The presence in shock-melt veins and the deuterium enrichments ( ...
The NanoSIMS ion probe is a new-generation SIMS instrument, characterised by superior spatial resolution, high sensitivity and multi-collection capability. Isotope studies of certain elements can be conducted with 50-100nm resolution, making the NanoSIMS a ...