En économétrie, l'endogénéité se réfère généralement à une situation dans laquelle une des variables explicatives est corrélée avec le terme d'erreur. La distinction entre les variables endogènes et exogènes vient des modèles d'équations simultanées, où on sépare les variables entre celles qui sont déterminées par le modèle et celles qui sont prédéterminées. Ignorer la simultanéité dans l'estimation provoque un biais des estimateurs car cela viole l'hypothèse d'orthogonalité présente dans le théorème de Gauss-Markov. Le problème de l'endogénéité est malheureusement souvent ignoré par les chercheurs faisant de la recherche non-expérimentale, ce qui empêche de faire de bonnes recommandations en matière de politique à mener. La méthode des variables instrumentales est souvent utilisée pour régler le problème de l'endogénéité. En plus de la simultanéité, la corrélation entre les variables explicatives et le terme d'erreur peut survenir quand une variable omise agit à la fois sur la variable expliquée et sur une (ou des) variable(s) explicative(s). Cette corrélation peut également arriver quand il y a des erreurs de mesure sur les variables expliquées. Dans un modèle stochastique, on peut définir les notions de faible exogénéité, forte exogénéité et super exogénéité. Une variable est : faiblement exogène si les coefficients d'intérêt sont tous inclus dans l'équation que l'on cherche à estimer, et si l'estimation de ces coefficients n'est pas contrainte par la valeur des coefficients apparaissant dans d'autres équations du modèle ; fortement exogène si elle est faiblement exogène et qu'elle n'est pas causée au sens de Granger ; super exogène si les coefficients ne varient pas. Quand les variables explicatives ne sont pas stochastiques, elles sont fortement exogènes. Si la variable explicative est corrélée avec le terme d'erreur, alors le coefficient estimé par l'estimateur des moindres carrés ordinaires (MCO) sera biaisé. Il existe plusieurs méthodes de correction de ce biais, comme la méthode des variables instrumentales.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.