In biology, abiogenesis (from a- 'not' + Greek bios 'life' + genesis 'origin') or the origin of life is the natural process by which life has arisen from non-living matter, such as simple organic compounds. The prevailing scientific hypothesis is that the transition from non-living to living entities on Earth was not a single event, but a process of increasing complexity involving the formation of a habitable planet, the prebiotic synthesis of organic molecules, molecular self-replication, self-assembly, autocatalysis, and the emergence of cell membranes. Many proposals have been made for different stages of the process.
The study of abiogenesis aims to determine how pre-life chemical reactions gave rise to life under conditions strikingly different from those on Earth today. It primarily uses tools from biology and chemistry, with more recent approaches attempting a synthesis of many sciences. Life functions through the specialized chemistry of carbon and water, and builds largely upon four key families of chemicals: lipids for cell membranes, carbohydrates such as sugars, amino acids for protein metabolism, and nucleic acid DNA and RNA for the mechanisms of heredity. Any successful theory of abiogenesis must explain the origins and interactions of these classes of molecules. Many approaches to abiogenesis investigate how self-replicating molecules, or their components, came into existence. Researchers generally think that current life descends from an RNA world, although other self-replicating molecules may have preceded RNA.
The classic 1952 Miller–Urey experiment demonstrated that most amino acids, the chemical constituents of proteins, can be synthesized from inorganic compounds under conditions intended to replicate those of the early Earth. External sources of energy may have triggered these reactions, including lightning, radiation, atmospheric entries of micro-meteorites and implosion of bubbles in sea and ocean waves.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Purine metabolism refers to the metabolic pathways to synthesize and break down purines that are present in many organisms. Purines are biologically synthesized as nucleotides and in particular as ribotides, i.e. bases attached to ribose 5-phosphate. Both adenine and guanine are derived from the nucleotide inosine monophosphate (IMP), which is the first compound in the pathway to have a completely formed purine ring system. Inosine monophosphate is synthesized on a pre-existing ribose-phosphate through a complex pathway (as shown in the figure on the right).
An autocatalytic set is a collection of entities, each of which can be created catalytically by other entities within the set, such that as a whole, the set is able to catalyze its own production. In this way the set as a whole is said to be autocatalytic. Autocatalytic sets were originally and most concretely defined in terms of molecular entities, but have more recently been metaphorically extended to the study of systems in sociology, ecology, and economics.
ICARUS, initialement publié sous le nom Icarus: International Journal of Solar System Studies, est une revue scientifique à comité de lecture fondée en 1962. La revue présente des recherches effectuées dans des domaines concernant la planétologie tels que l'astronomie, la géologie, la météorologie, la physique et la biologie. Publication de l'Academic Press (qui fait partie désormais de l'éditeur scientifique Elsevier Science), le journal est géré depuis 1974 par la (DPS) de l'Union américaine d'astronomie.
Ce cours décrit de façon simple les processus physiques qui expliquent l'univers dans lequel nous vivons. En couvrant une large gamme de sujets, le but du cours est aussi de donner un aperçu général d
This course instructs students in the use of advanced computational models and simulations in cell biology. The importance of dimensionality, symmetry and conservation in models of self-assembly, memb
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well
Couvre les principes de détection des rayonnements, y compris l'interaction, la classification, l'efficacité, la résolution énergétique, le comportement des détecteurs et les modes de fonctionnement.
Discute de la dynamique d'auto-assemblage dans les systèmes huileux et lipidiques, en se concentrant sur la croissance globale et la formation de pores dans les bicouches lipidiques.
The constant urge to construct new molecules in an economical and sustainable fashion led to the development of numerous metal-catalyzed transformations. Organocatalysts consisting of abundant and more sustainable elements offer an elegant solution to over ...
Guanine crystals are frequently encountered in nature in the beta-polymorph to create structural colors, to enhance the vision of creatures, and for camouflage. Unfortunately, it is challenging to control the crystallization of guanine in aqueous condition ...
Ordered two-dimensional (2D) materials hosting Å-scale pores are highly promising for enabling challenging separation, thanks to well-defined pore geometry resulting in tight confinement of ions when hosted inside the pore. In addition, the 2D nature of th ...