Concept

1 33 honeycomb

DISPLAYTITLE:1 33 honeycomb In 7-dimensional geometry, 133 is a uniform honeycomb, also given by Schläfli symbol {3,33,3}, and is composed of [[1 32 polytope|132]] facets. It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 7-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram. Removing a node on the end of one of the 3-length branch leaves the 132, its only facet type. The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the trirectified 7-simplex, 033. The edge figure is determined by removing the ringed nodes of the vertex figure and ringing the neighboring node. This makes the tetrahedral duoprism, {3,3}×{3,3}. Each vertex of this polytope corresponds to the center of a 6-sphere in a moderately dense sphere packing, in which each sphere is tangent to 70 others; the best known for 7 dimensions (the kissing number) is 126. The group is related to the by a geometric folding, so this honeycomb can be projected into the 4-dimensional demitesseractic honeycomb. contains as a subgroup of index 144. Both and can be seen as affine extension from from different nodes: The E7* lattice (also called E72) has double the symmetry, represented by [[3,33,3]]. The Voronoi cell of the E7* lattice is the 132 polytope, and voronoi tessellation the 133 honeycomb. The E7* lattice is constructed by 2 copies of the E7 lattice vertices, one from each long branch of the Coxeter diagram, and can be constructed as the union of four A7* lattices, also called A74: ∪ = ∪ ∪ ∪ = dual of . The 133 is fourth in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. The final is a noncompact hyperbolic honeycomb, 134. The rectified 133 or 0331, Coxeter diagram has facets and , and vertex figure . 8-polytope 331 honeycomb H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973 Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, (Chapter 3: Wythoff's Construction for Uniform Polytopes) Kaleidoscopes: Selected Writings of H.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.