Implantable neural interfaces with the central and peripheral nervous systems are currently used to restore sensory, motor, and cognitive functions in disabled people with very promising results. They have also been used to modulate autonomic activities to ...
The last two decades have seen the development of organoid models for many different tissues and organs. Organoids are three-dimensional organ-mimetics derived from stem or progenitor cells comprising various specialized cell types, resembling the architec ...
One of the goals of synthetic biology is the development of an artificial cell. Building an artificial cell from scratch will provide a deeper understanding of fundamental mechanisms and models in biology and promises to contribute towards building novel p ...
Biological research heavily relies on the use of animal models, which has made it difficult to answer specific questions about human biology and disease. However, with the advent of human organoids - miniature versions of tissues generated in 3D human stem ...
Complex three-dimensional in vitro organ-like models, or organoids, offer a unique biological tool with distinct advantages over two-dimensional cell culture systems, which can be too simplistic, and animal models, which can be too complex and may fail to ...
Urinary tract infections (UTIs) are amongst the most common bacterial infections and are the second-most frequent reason for antibiotic prescriptions. Moreover, in about 25% of all treated cases, recurrence of infection occurs. Uropathogenic Escherichia co ...
Liver organoids have emerged as promising in vitro models for toxicology, drug discovery, and disease modeling. However, conventional 3D epithelial organoid culture systems suffer from significant drawbacks, including limited culture duration, a nonphysiol ...
Recently, flexible and soft bioelectronic interfaces have been proposed as a solution to improve existing neural interfaces that currently present mechanical mismatch with the soft tissue. These are devices fabricated with thin polymeric or elastomeric bac ...
One of the long-standing goals in the field of tissue engineering is the fabrication of de novo tissues or even organs to provide better tissue models for basic research and drug discovery, and to alleviate a shortage of donor organs in the future. Researc ...
Bioprinting of functional tissues could overcome tissue shortages and allow a more rapid response for treatments. However, despite recent progress in bioprinting, and its outstanding ability to position cells and biomaterials in a precise 3D manner, its su ...