PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
COM-417: Advanced probability and applicationsIn this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
MICRO-330: SensorsPrincipes physiques et électronique utilisés dans les capteurs. Applications des capteurs.
MATH-518: Ergodic theoryThis is an introductory course in ergodic theory, providing a comprehensive overlook over the main aspects and applications of this field.
ENG-209: Data science for engineers with PythonCe cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
AR-219: Advanced CAO and Integrated Modeling DIM1ère année: bases nécessaires à la représentation informatique 2D (3D).
Passage d'un à plusieurs logiciels: compétence de choisir les outils adéquats en 2D et en 3D.
Mise en relation des outils de CAO
MATH-437: Calculus of variationsIntroduction to classical Calculus of Variations and a selection of modern techniques. The Calculus of Variations aims at showing the existence of minimisers (or critical points) of functionals that n
COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
PHYS-641: Quantum ComputingAfter introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament