Résumé
En astronomie, les nuages moléculaires sont des nébuleuses interstellaires qui ont une densité et une taille suffisante pour permettre la formation d'hydrogène moléculaire, H2. Cependant, il est difficile de le détecter et le moyen le plus employée pour tracer les molécules de H2 est l'utilisation du monoxyde de carbone CO. En effet, le rapport entre la luminosité du CO et la masse de H2 est presque constant. Cependant, l'utilisation du CO comme traceur de H2 par ailleurs invisible, pose encore de nombreuses questions fondamentales, notamment, comment lier l'évolution d'un nuage moléculaire à l'évolution d'une galaxie dans son ensemble. Dans la Voie lactée, les nuages moléculaires représentent approximativement la moitié de toute la masse de gaz dans la région dans l'orbite du Soleil, faisant d'eux un composant significatif du disque galactique. Les catalogues des nuages montrent que la majeure partie de la masse moléculaire est concentrée dans l'objet le plus massif, qui comporte plusieurs millions de masses solaires. Ils sont situés dans un plan d'environ 50-75 parsecs, beaucoup plus mince que les autres composants gazeux comme l'hydrogène atomique et ionisé. On pense qu'ils se trouvent principalement dans les bras en spirale, mais il est difficile de le vérifier, dans notre galaxie en raison de la difficulté d'estimer les distances, et dans d'autres galaxies parce que les observations à haute résolution (qui peuvent montrer clairement les bras en spirale) ne sont pas sensibles à un fond uniforme d'émission de CO. naissance des étoiles À notre connaissance, dans l'univers actuel, la création des étoiles se produit exclusivement dans les nuages moléculaires. C'est une conséquence normale de leurs basses températures, de leur densités relativement élevées et de l'observation que les grands nuages où se forment les étoiles sont fortement confinés par leur propre gravité (comme les étoiles, les planètes et les galaxies) plutôt que par une pression externe (comme les nuages dans le ciel).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
PHYS-753: Dynamics of astrophysical fluids and plasmas
The dynamics of ordinary matter in the Universe follows the laws of (magneto)hydrodynamics. In this course, the system of equations that describes astrophysical fluids will be discussed on the basis o
ENV-410: Science of climate change
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
PHYS-209: Astrophysics I: introduction to astrophysics
Ce cours décrit de façon simple les processus physiques qui expliquent l'univers dans lequel nous vivons. En couvrant une large gamme de sujets, le but du cours est aussi de donner un aperçu général d