The Vlasov equation is a differential equation describing time evolution of the distribution function of plasma consisting of charged particles with long-range interaction, e.g. Coulomb. The equation was first suggested for description of plasma by Anatoly Vlasov in 1938 and later discussed by him in detail in a monograph. First, Vlasov argues that the standard kinetic approach based on the Boltzmann equation has difficulties when applied to a description of the plasma with long-range Coulomb interaction. He mentions the following problems arising when applying the kinetic theory based on pair collisions to plasma dynamics: Theory of pair collisions disagrees with the discovery by Rayleigh, Irving Langmuir and Lewi Tonks of natural vibrations in electron plasma. Theory of pair collisions is formally not applicable to Coulomb interaction due to the divergence of the kinetic terms. Theory of pair collisions cannot explain experiments by Harrison Merrill and Harold Webb on anomalous electron scattering in gaseous plasma. Vlasov suggests that these difficulties originate from the long-range character of Coulomb interaction. He starts with the collisionless Boltzmann equation (sometimes called the Vlasov equation, anachronistically in this context), in generalized coordinates: explicitly a PDE: and adapted it to the case of a plasma, leading to the systems of equations shown below. Here f is a general distribution function of particles with momentum p at coordinates r and given time t. Note that the term is the force F acting on the particle. Instead of collision-based kinetic description for interaction of charged particles in plasma, Vlasov utilizes a self-consistent collective field created by the charged plasma particles. Such a description uses distribution functions and for electrons and (positive) plasma ions. The distribution function for species α describes the number of particles of the species α having approximately the momentum near the position at time t.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.