Série génératriceEn mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.
Nombre de BellEn mathématiques, le n-ième nombre de Bell (du nom de Eric Temple Bell) est le nombre de partitions d'un ensemble à n éléments distincts ou, ce qui revient au même, le nombre de relations d'équivalence sur un tel ensemble. Ces nombres forment la suite d'entiers de l'OEIS, dont on peut calculer à la main les premiers termes :Le premier vaut 1 car il existe exactement une partition de l'ensemble vide : la partition vide, formée d'aucune partie. En effet, ses éléments (puisqu'il n'y en a aucun) sont bien non vides et disjoints deux à deux, et de réunion vide.
Formule du binôme de Newtonvignette|Visualisation de l'expansion binomiale La formule du binôme de Newton est une formule mathématique donnée par Isaac Newton pour trouver le développement d'une puissance entière quelconque d'un binôme. Elle est aussi appelée formule du binôme ou formule de Newton. Si x et y sont deux éléments d'un anneau (par exemple deux nombres réels ou complexes, deux polynômes, deux matrices carrées de même taille, etc.
Polynôme de LaguerreEn mathématiques, les polynômes de Laguerre, nommés d'après Edmond Laguerre, sont les solutions normalisées de l'équation de Laguerre : qui est une équation différentielle linéaire homogène d'ordre 2 et se réécrit sous la forme de Sturm-Liouville : Cette équation a des solutions non singulières seulement si n est un entier positif. Les solutions L forment une suite de polynômes orthogonaux dans L (R, edx), et la normalisation se fait en leur imposant d'être de norme 1, donc de former une famille orthonormale.
Polynôme d'HermiteEn mathématiques, les polynômes d'Hermite sont une suite de polynômes qui a été nommée ainsi en l'honneur de Charles Hermite (bien qu'ils aient été définis, sous une autre forme, en premier par Pierre-Simon Laplace en 1810, surtout été étudiés par Joseph-Louis Lagrange lors de ses travaux sur les probabilités puis en détail par Pafnouti Tchebychev six ans avant Hermite). Ils sont parfois décrits comme des polynômes osculateurs.