FIN-618: Financial Econometrics IIThe course aims to give students the tools to write academic papers and is divided into two parts. The first part covers microeconometric methods including panel data, IVs, difference-in-differences,
MGT-416: Causal inferenceStudents will learn the core concepts and techniques of network analysis with emphasis on causal inference. Theory and
application will be balanced, with students working directly with network data th
MATH-506: Topology IV.b - cohomology ringsSingular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
MATH-336: Randomization and causationThis course covers formal frameworks for causal inference. We focus on experimental designs, definitions of causal models, interpretation of causal parameters and estimation of causal effects.
MATH-352: Causal thinkingThis course will give a unified presentation of modern methods for causal inference. We focus on concepts, and we will present examples and ideas from various scientific disciplines, including medicin
PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
PHYS-512: Statistical physics of computationThe students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m