Cours associés (29)
EE-735: Online learning in games
This course provides an overview of recent developments in online learning, game theory, and variational inequalities and their point of intersection with a focus on algorithmic development. The prima
EE-311: Fundamentals of machine learning
Ce cours présente une vue générale des techniques d'apprentissage automatique, passant en revue les algorithmes, le formalisme théorique et les protocoles expérimentaux.
MATH-106(e): Analysis II
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs variables.
MATH-329: Continuous optimization
This course introduces students to continuous, nonlinear optimization. We study the theory of optimization with continuous variables (with full proofs), and we analyze and implement important algorith
CS-233(a): Introduction to machine learning (BA3)
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
BIO-642: State of the Art Topics in Neuroscience XIII
The Loss Landscape of Neural Networks is in general non-convex and rough, but recent mathematical results lead provide insights of practical relevance. 9 online lectures, lecturers from NYU, Stanford
MGT-529: Data science and machine learning II
This class discusses advanced data science and machine learning (ML) topics: Recommender Systems, Graph Analytics, and Deep Learning, Big Data, Data Clouds, APIs, Clustering. The course uses the Wol
CS-233(b): Introduction to machine learning (BA4)
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
MGT-492: Data science and machine learning I
This class provides a hands-on introduction to data science and machine learning topics, exploring areas such as data acquisition and cleaning, regression, classification, clustering, neural networks,

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.