Résumé
In physics, an entropic force acting in a system is an emergent phenomenon resulting from the entire system's statistical tendency to increase its entropy, rather than from a particular underlying force on the atomic scale. In the canonical ensemble, the entropic force associated to a macrostate partition is given by where is the temperature, is the entropy associated to the macrostate , and is the present macrostate. The internal energy of an ideal gas depends only on its temperature, and not on the volume of its containing box, so it is not an energy effect that tends to increase the volume of the box as gas pressure does. This implies that the pressure of an ideal gas has an entropic origin. What is the origin of such an entropic force? The most general answer is that the effect of thermal fluctuations tends to bring a thermodynamic system toward a macroscopic state that corresponds to a maximum in the number of microscopic states (or micro-states) that are compatible with this macroscopic state. In other words, thermal fluctuations tend to bring a system toward its macroscopic state of maximum entropy. The entropic approach to Brownian movement was initially proposed by R. M. Neumann. Neumann derived the entropic force for a particle undergoing three-dimensional Brownian motion using the Boltzmann equation, denoting this force as a diffusional driving force or radial force. In the paper, three example systems are shown to exhibit such a force: electrostatic system of molten salt, surface tension and, elasticity of rubber. Ideal chain A standard example of an entropic force is the elasticity of a freely jointed polymer molecule. For an ideal chain, maximizing its entropy means reducing the distance between its two free ends. Consequently, a force that tends to collapse the chain is exerted by the ideal chain between its two free ends. This entropic force is proportional to the distance between the two ends. The entropic force by a freely jointed chain has a clear mechanical origin and can be computed using constrained Lagrangian dynamics.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.