L’inégalité FKG, notion due à Fortuin, Kasteleyn et Ginibre est une version généralisée de l'inégalité de Tchebychev pour les sommes. C'est une inégalité de corrélation utilisée, par exemple, en théorie de la percolation, et dans l'étude du modèle de graphes aléatoires dû à Paul Erdős et Alfréd Rényi : le . Sous la forme due à Harris, l'inégalité FKG concerne un ensemble fini ou dénombrable J dont chaque élément j est soit dans l'état 0, avec probabilité 1-p, soit dans l'état 1 avec probabilité p. L'état global du système J est donc décrit par un élément de Comme les états des différents sites j de J sont supposés indépendants, l'ensemble des états, ou des configurations, est muni d'une loi de probabilité qui est une mesure produit de lois de Bernoulli. L'ensemble Ω peut-être identifié à l'ensemble des parties de J, via la correspondance entre ensemble et fonction indicatrice. L'inégalité FKG stipule que Cela revient à dire qu'il y a une corrélation positive entre les variables concernées, puisqu'on peut reformuler la première inégalité sous la forme Le deuxième point de l'inégalité FKG est obtenu comme conséquence immédiate du premier point, en spécialisant au cas particulier où X est la fonction indicatrice de A et où Y est la fonction indicatrice de B. L'inégalité vaut aussi pour des variables ou des parties décroissantes, mais le sens des inégalités change lorsque les variables ou les parties concernées ont des sens de monotonie opposés. Il y a des formes plus générales de l'inégalité FKG, avec les mêmes conclusions, mais pour des espaces produits plus généraux, munis d'une mesure qui n'est pas nécessairement une mesure produit. On définit une relation d'ordre partielle sur Ω comme suit : pour on pose Si on identifie Ω à l'ensemble des parties de J, la relation d'ordre ci-dessus s'interprète comme la relation d'inclusion. Ce parallèle ne tient plus si l'on veut généraliser de à pour un espace d'états E plus général que {0,1}.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.