Cours associés (30)
CS-330: Artificial intelligence
Introduction aux techniques de l'Intelligence Artificielle, complémentée par des exercices de programmation qui montrent les algorithmes et des exemples de leur application à des problèmes pratiques.
ENG-466: Distributed intelligent systems
The goal of this course is to provide methods and tools for modeling distributed intelligent systems as well as designing and optimizing coordination strategies. The course is a well-balanced mixture
ME-390: Foundations of artificial intelligence
This course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica
MATH-413: Statistics for data science
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
BIO-449: Understanding statistics and experimental design
This course is neither an introduction to the mathematics of statistics nor an introduction to a statistics program such as R. The aim of the course is to understand statistics from its experimental d
MATH-614: Foundations of causal inference
This seminar will provide a survey of the canonical literature in causal inference. At the end of this course, students will gain a broad understanding of the most important methodological concepts an
MATH-616: Numerical methods for random PDEs and uncertainty
The course focuses on mathematical models based on PDEs with random parameters, and presents numerical techniques for forward uncertainty propagation, inverse uncertainty analysis in a Bayesian framew
MATH-435: Bayesian Computation
This course aims at giving a broad overview of Bayesian inference, highlighting how the basic Bayesian paradigm proceeds, and the various methods that can be used to deal with the computational issues

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.