Concept

Maximum spacing estimation

Cours associés (22)
MATH-413: Statistics for data science
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
MATH-336: Randomization and causation
This course covers formal frameworks for causal inference. We focus on experimental designs, definitions of causal models, interpretation of causal parameters and estimation of causal effects.
FIN-474: Advanced risk management topics
The students learn different financial risk measures and their risk theoretical properties. They learn how to design and implement risk engines, with model estimation, forecast, reporting and validati
MATH-234(d): Probability and statistics
Ce cours enseigne les notions élémentaires de la théorie de probabilité et de la statistique, tels que l'inférence, les tests et la régression.
EE-607: Advanced Methods for Model Identification
This course introduces the principles of model identification for non-linear dynamic systems, and provides a set of possible solution methods that are thoroughly characterized in terms of modelling as
MATH-341: Linear models
Regression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
MATH-231: Probability and statistics I
Introduction to notions of probability and basic statistics.
FIN-403: Econometrics
The course covers basic econometric models and methods that are routinely applied to obtain inference results in economic and financial applications.
BIO-645: Introduction to Applied Data Science (I2ADS)
The "Introduction to Applied Data Science" (I2ADS) course is aimed at students of all levels to train them in the core computer science software stack and techniques forming the pillars of open & repr
COM-406: Foundations of Data Science
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.