In finance, model risk is the risk of loss resulting from using insufficiently accurate models to make decisions, originally and frequently in the context of valuing financial securities. However, model risk is more and more prevalent in activities other than financial securities valuation, such as assigning consumer credit scores, real-time probability prediction of fraudulent credit card transactions, and computing the probability of air flight passenger being a terrorist. Rebonato in 2002 defines model risk as "the risk of occurrence of a significant difference between the mark-to-model value of a complex and/or illiquid instrument, and the price at which the same instrument is revealed to have traded in the market".
Burke regards failure to use a model (instead over-relying on expert judgment) as a type of model risk. Derman describes various types of model risk that arise from using a model:
Inapplicability of model.
Incorrect model specification.
Programming errors.
Technical errors.
Use of inaccurate numerical approximations.
Implementation risk.
Data issues.
Calibration errors.
Volatility is the most important input in risk management models and pricing models. Uncertainty on volatility leads to model risk. Derman believes that products whose value depends on a volatility smile are most likely to suffer from model risk. He writes "I would think it's safe to say that there is no area where model risk is more of an issue than in the modeling of the volatility smile."
Avellaneda & Paras (1995) proposed a systematic way of studying and mitigating model risk resulting from volatility uncertainty.
Buraschi and Corielli formalise the concept of 'time inconsistency' with regards to no-arbitrage models that allow for a perfect fit of the term structure of the interest rates. In these models the current yield curve is an input so that new observations on the yield curve can be used to update the model at regular frequencies. They explore the issue of time-consistent and self-financing strategies in this class of models.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
The objective of this course is to provide a detailed coverage of the standard models for the valuation and hedging of derivatives products such as European options, American options, forward contract
The students learn different financial risk measures and their risk theoretical properties. They learn how to design and implement risk engines, with model estimation, forecast, reporting and validati
Couvre le modèle Black-Scholes-Merton, la dynamique des actions, la tarification des options et les stratégies de réplication.
En finance, l'analyse quantitative est l'utilisation de mathématiques financières, souvent dérivées des probabilités, pour mettre au point et utiliser des modèles permettant aux gestionnaires de fonds et autres spécialistes financiers de s'attaquer à deux problèmes : mieux évaluer la valeur des actifs financiers, et surtout leurs dérivés. Ces dérivés peuvent être des produits comme les warrants, les certificats ou tout autre type de dérivé ou d'option (contrats Futures sur matières premières, indices, etc.
La crise financière mondiale de 2007-2008 est une crise financière, marquée par une crise de liquidité et parfois par des crises de solvabilité tant au niveau des banques que des États, et une raréfaction du crédit aux entreprises. Amorcée en , elle trouve son origine dans le dégonflement de bulles de prix (dont la bulle immobilière américaine des années 2000) et les pertes importantes des établissements financiers provoquées par la crise des subprimes.
La finance renvoie à un domaine d'activité , aujourd'hui mondialisé, qui consiste à fournir ou trouver l'argent ou les « produits financiers » nécessaire à la réalisation d'une opération économique. La finance permet de faire transiter des capitaux des agents économiques excédentaires (qui disposent d'une épargne à faire fructifier) aux agents économiques déficitaires, qui en ont besoin (pour se financer, croître, etc.) La finance regroupe à la fois le système financier et les opérations financières qui ont lieu dans ce système.
The need to evaluate natural resource investments under uncertainty has given rise to the development of real options valuation; however, the analysis of such investments has been restricted by the capabilities of existing valuation approaches. We re-visit ...
2020
,
We introduce a novel class of credit risk models in which the drift of the survival process of a firm is a linear function of the factors. The prices of defaultable bonds and credit default swaps (CDS) are linear-rational in the factors. The price of a CDS ...
We use a fairly general framework to analyze a rich variety of financial optimization models presented in the literature, with emphasis on contributions included in this volume and a related special issue of OR Spectrum. We do not aim at providing readers ...