Couvre la recherche de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés.
Présente les bases de l'analyse de données textuelles, couvrant la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de techniques de prétraitement et de modèles d'apprentissage automatique.
Explore le modèle Vector Space, le sac de mots, tf-idf, cosine similarité, Okapi BM25, et la précision et le rappel dans la récupération d'information.
Plongez dans le traitement de grandes collections de textes numériques, en explorant les régularités cachées, la réutilisation du texte et l'analyse TF-IDF.
Introduit le traitement du langage naturel, qui couvre le prétraitement du texte, l'analyse des sentiments et l'analyse des sujets, en mettant l'accent sur l'établissement d'un indice de risque pour le changement climatique.
Présente les bases du traitement de données textuelles, couvrant la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets.
Couvre l'indexation sémantique latente, une méthode pour améliorer la récupération d'informations en cartographiant des documents et des requêtes dans un espace conceptuel de dimension inférieure.
Couvre la récupération d'informations probabilistes, la pertinence de la modélisation en tant que probabilité, l'expansion des requêtes et la génération automatique de thésaurus.