Axon guidance (also called axon pathfinding) is a subfield of neural development concerning the process by which neurons send out axons to reach their correct targets. Axons often follow very precise paths in the nervous system, and how they manage to find their way so accurately is an area of ongoing research.
Axon growth takes place from a region called the growth cone and reaching the axon target is accomplished with relatively few guidance molecules. Growth cone receptors respond to the guidance cues.
Growing axons have a highly motile structure at the growing tip called the growth cone, which responds to signals in the extracellular environment that instruct the axon in which direction to grow. These signals, called guidance cues, can be fixed in place or diffusible; they can attract or repel axons. Growth cones contain receptors that recognize these guidance cues and interpret the signal into a chemotropic response. The general theoretical framework is that when a growth cone "senses" a guidance cue, the receptors activate various signaling molecules in the growth cone that eventually affect the cytoskeleton. If the growth cone senses a gradient of guidance cue, the intracellular signaling in the growth cone happens asymmetrically, so that cytoskeletal changes happen asymmetrically and the growth cone turns toward or away from the guidance cue.
A combination of genetic and biochemical methods (see below) has led to the discovery of several important classes of axon guidance molecules and their receptors:
Netrins: Netrins are secreted molecules that can act to attract or repel axons by binding to their receptors, DCC and UNC-5.
Slits: Secreted proteins that normally repel growth cones by engaging Robo (Roundabout) class receptors in Slit-Robo cell signaling complexes.
Ephrins: Ephrins are cell surface molecules that activate Eph receptors on the surface of other cells. This interaction can be attractive or repulsive. In some cases, Ephrins can also act as receptors by transducing a signal into the expressing cell, while Ephs act as the ligands.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course introduces students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies with a focus on the biophysical level.
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
Netrins are a class of proteins involved in axon guidance. They are named after the Sanskrit word "netr", which means "one who guides". Netrins are genetically conserved across nematode worms, fruit flies, frogs, mice, and humans. Structurally, netrin resembles the extracellular matrix protein laminin. Netrins are chemotropic; a growing axon will either move towards or away from a higher concentration of netrin.
Le neurodéveloppement (ou développement neural) désigne la mise en place du système nerveux au cours de l'embryogenèse et aux stades suivant de l'ontogenèse d'un organisme animal. Son étude repose sur une approche combinant neurosciences et biologie du développement afin d'en décrire les mécanismes moléculaires et cellulaires. La neurogenèse est le mécanisme central du neurodéveloppement.
Un cône de croissance est une extension dynamique, riche en actine, d'un neurite en développement cherchant un organe cible. Il se situe à l'extrémité distale d'un prolongement axonal ou dendritique neuroblastique en croissance . Il s'agit d'une structure cellulaire transitoire et mobile, qui a pour fonction d'explorer l'environnement extracellulaire et de répondre au guidage axonal assuré par différentes molécules. Les protéines de guidage indiquent au cône de croissance sa voie de migration en modifiant la vitesse ou la direction de sa croissance par une biosynthèse des protéines adaptée.
Explore l'optimisation des systèmes neuroprothétiques, y compris la restauration de rétroaction sensorielle et les stratégies de stimulation neuronale.
Explore la rigidité de flexion des interfaces neurales douces, y compris les axones et les sondes pénétrantes, avec des modèles géométriques idéaux et des gammes de modules élastiques.
Explore la connectivité synaptique dans les régions hippocampales, en mettant l'accent sur la complexité des réseaux neuronaux et le rôle des approches de modélisation.
We enable the estimation of the per-axon axial diffusivity from single encoding, strongly diffusion-weighted, pulsed gradient spin echo data. Additionally, we improve the estimation of the per-axon radial diffusivity compared to estimates based on spherica ...
Spinal cord injury (SCI) interrupts axonal connections between the brain and the spinal cord, and is characterized by a spectrum of sensorimotor and autonomic impairments. While spontaneous recovery is limited, recent studies have shown that functional imp ...
Here, we show that, in the developing spinal cord, after the early Wnt-mediated Tcf transcription activation that confers dorsal identity to neural stem cells, neurogenesis redirects beta-catenin from the adherens junctions to the nucleus to stimulate Tcfo ...