Aurelio MuttoniAurelio Muttoni est professeur ordinaire et directeur du Laboratoire de Construction en Béton de l’Ecole Polytechnique Fédérale de Lausanne (Suisse). Il a reçu son diplôme et son doctorat en génie civil de l’Ecole Polytechnique Fédérale de Zürich à Zürich, Suisse, en 1982 et 1989 respectivement.
Ses activités actuelles en matière d’enseignement se concentrent sur la conception des structures, la théorie et le dimensionnement des structures en béton ainsi que la conception des ponts. Son groupe de recherche est actif dans les domaines suivants : comportement et méthodes de dimensionnement des structures en béton, conception de structures innovantes, effort tranchant dans les structures en béton, poinçonnement des dalles, analyse non-linéaire des structures incluant leur fiabilité, adhérence entre l’acier et le béton, engrènement des granulats, fatigue et influence de la durée de chargement sur la résistance du béton, comportement mécanique et principes de dimensionnement pour le béton à ultra-hautes performances, béton textile et béton recyclé.
Aurelio Muttoni a reçu la distinction
Chester Paul Siess Award for Excellence in Structural Research
en 2010 et la médaille
Wason for Most Meritorious Paper
en 2014, toutes deux décernées par l’
American Concrete Institute
. Il est membre du Presidium de la
fib
(Fédération Internationale du Béton), de plusieurs commissions et groupes de travail de la
fib
et il a dirigé le
Project Team
pour la deuxième génération de la norme européenne EN 1992-1-1 (Eurocode pour les structures en béton).
Aurelio Muttoni est aussi co-fondateur et associé du bureau de conseil Muttoni & Fernández (www.mfic.ch). Ce bureau est actif dans la conception, l’analyse et le dimensionnement de structures porteuses pour les constructions d’architecture et de génie civil, ainsi que dans le conseil en matière d’ingénierie structurale. Katrin BeyerSince 2017 Associate Professor, School of Architecture, Civil and Environmental Engineering (ENAC), EPFL. Head of the Earthquake Engineering and Structural Dynamics (EESD) Laboratory
2010-2017 Assistant Professor, EPFL.
2008-2010 Post-doctoral researcher, ETH Zürich.
2003-2007 Ph.D., Roseschool / Università di Pavia, Italy.
2001-2003 Ove Arup & Partners, Advanced Technology and Research Group, London.
2001 Diploma, Civil engineering, ETH Zürich.
Eugen Brühwilerbirth date: 19.11.1958 nationality: Swiss (native from Dussnang, Canton of Thurgau) Education : - July 1988 : doctoral degree from the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland with a thesis entitled Fracture mechanics of dam concrete subjected to quasi-static and seismic loading conditions - December 1983 : civil engineering diploma (university degree) from the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland Professional Experience : - Since 1st April 1995 : Professor of Structural Engineering at EPFL and Head of the Laboratory of Maintenance, Construction and Safety for Civil Structures (MCS) (often considered being the first chair worldwide devoted exclusively to existing civil structures). - 1991-94 Project Manager and structural engineer with the Swiss Federal Railways (SBB), Division of Bridges and Structures, Zurich: Monitoring and maintenance of bridges and structures, Project manager and checking engineer for the construction of new bridges and rehabilitation of existing bridges. - 1989/90 Research associate at the Department of Civil Engineering, University of Colorado, Boulder, USA : Fracture mechanics of concrete and fracture of concrete dams. - 1986-88 Doctoral student at EPFL-LMC (Building Materials, Prof. Wittmann) : Fracture mechanics of concrete, fracture of concrete dams under seismic loading - 1984/85 Research engineer at EPFL-ICOM (Steel Structures, Prof. Badoux and Prof. Hirt) : Fatigue behaviour and fracture mechanics of riveted bridges
Thomas KellerEDUCATION
1992 Dr. sc. techn. (PhD)
Swiss Federal Institute of Technology, Zurich (ETH)
1983 Dipl. Bauing. ETH (MS civil engineering)
Swiss Federal Institute of Technology, Zurich (ETH)
EMPLOYMENT
2007-present, Full Professor of Structural Engineering (100%)
Swiss Federal Institute of Technology, Lausanne (EPFL)
Civil Engineering Institute
1998-2007, Associate Professor of Structural Engineering (80/100%)
Swiss Federal Institute of Technology, Lausanne (EPFL)
Structural Engineering Institute
Foundation of CCLab in 2000
1996-1998, Assistant Professor of Structural Engineering (50%)
Swiss Federal Institute of Technology, Zurich (ETH)
Department of Architecture
1992-2004, Senior Project Engineer and Joint Owner
Engineering offices in Zug and Zurich
1990-1992, Research Scientist
Swiss Federal Institute of Technology, Zurich (ETH)
Structural Engineering Institute
1986-1990, Project Engineer
Architecture and engineering office Calatrava, Zurich
1983-1986, Teaching and Research Assistant
Swiss Federal Institute of Technology, Zurich (ETH)
Structural Engineering Institute
Dimitrios LignosProf. Lignos joined the École Polytechnique Féderale de Lausanne (EPFL) in 2016 from McGill University in Canada where he was a tenured Associate Professor and a William Dawson Scholar for Infrastructure Resilience. He holds a diploma (National Technical University of Athens, NTUA, 2003), M.S. (Stanford University, 2004) and Ph.D. (Stanford University, 2008). In addition, he was a post-doctoral scientist at Stanford University (2009) and in Kyoto University (2010). Prof. Lignos teaches graduate and undergraduate courses in seismic design, nonlinear behaviour of steel and composite structures as well as supplemental damping systems, Structural Stability, Nonlinear Analysis and Performance-based Earthquake Engineering. His awards for teaching, research and service in Civil Engineering include the 2011 Outstanding Teaching Award (Faculty of Engineering, McGill University), as well as the Outstanding reviewer (2012, 2013) award from ASCE, the 2013 State-of-the-Art in Civil Engineering Award by ASCE and the 2014 Christophe Pierre Award for Research Excellence - Early Career. Just recently, he received the 2019 Walter L. Huber Civil Engineering Research Prize from ASCE for significant contributions in developing state of the art methods to simulate extreme limit states in steel structures.Prof. Lignos is a member of ASCE and the Earthquake Engineering Research Institute. He acts as an Associate Editor for Metal Structures and Seismic Effects of the ASCE Journal of Structural Engineering. He joined the Editorial Board of Earthquake Spectra and Earthquake Engineering and Structural Dynamics International journals. He serves as an acting member of the CEN/TC 250/SC 8/WG 2 and has been selected as a member of the Project Team (PT2) for the Eurocode 8-Part 1 Current Revisions for Steel and Composite Structures. He is also a member of the Canadian Standards Association (CSA) S16 technical committee for Steel Structures. Prof. Lignos is involved as a NEHRP consultant in numerous research-to-practice projects related to the behaviour and nonlinear modelling and analysis of structures applicable to the engineering practice through the Applied Technology Council (ATC). Detailed Curriculum Vitae (last update September 2018)
Johan Alexandre Philippe GaumeI started my scientific career in 2008 at the Grenoble University in the IRSTEA laboratory where I did my master's thesis on the rheology of dense granular materials using the discrete element method. In the same lab, I followed with a PhD on the numerical modeling of the release depth of extreme avalanches using a combined mechanical-statistical approach and spatial extreme statistics. In 2013 I obtained a postdoc position at the WSL Institute for Snow and Avalanche Research SLF in Davos where I was in charge of developing and applying numerical models to improve the evaluation of avalanche release conditions and thus avalanche forecasting. While my PhD was mostly theoretical and numerical, my postdoc in Davos allowed me to gain a practical expertise by participating in laboratory and field experiments which helped to validate the models I develop. In 2016, I was awarded a SNF grant to work as a research and teaching associate in CRYOS at EPFL on the multiscale modeling of snow and avalanche processes. I developed discrete approaches to model snow micro-structure deformation and failure in order to evaluate constitutive snow models to be used at a larger scale in continuum models. I also developed numerical models for wind-driven snow transport. In 2017, I was a Visiting Scholar at UCLA to work on a Material Point Method (MPM) to simulate both the initiation and propagation of snow avalanches in a unified manner. The UCLA MPM model was initially developed for the Disney movie "Frozen" and has been modified and enriched based on Critical State Soil Mechanics to model the release and flow of slab avalanches. The results of this collaboration have been published in Nature Communications. In 2018, I was awarded the SNF Eccellenza Professorial Fellowship and became professor at EPFL and head of SLAB, the Snow and Avalanche Simulation Laboratory. At SLAB, we study micro-mechanical failure and fracture propagation of porous brittle solids, with applications in snow slab avalanche release. We also simulate avalanche dynamics and flow regime transitions over complex 3D terrain through the development of new models (depth-resolved and depth-averaged) based on MPM.In 2020, I obtained a SPARK grant to develop a new approach to simulate and better understand complex process chains in gravitational mass movements, including permafrost instabilities, rock, snow and ice avalanches and transitions to debris flows.
Karen ScrivenerDe nationalité anglaise, Karen Scrivener est née en 1958. Au cours de sa carrière, ses travaux et sa recherche traitaient des domaines suivants: Identification du développement microstucturale pendant l'hydratation du ciment. Elaboration d'une approche multitechnique pour étudier la microstucture des ciments et bétons, avec accent sur la quantification par analyse des images d'électrons retrodiffusés. Caractérisation de l'auréole de transition de la pâte de ciment autour des granulats. Compréhension des processus de dégardation des bétons, en particulier le gonflement lié à la formation de l'éttringite retardée dans les bétons étuvés.