In general relativity, the laws of physics can be expressed in a generally covariant form. In other words, the description of the world as given by the laws of physics does not depend on our choice of coordinate systems. However, it is often useful to fix upon a particular coordinate system, in order to solve actual problems or make actual predictions. A coordinate condition selects such coordinate system(s).
The Einstein field equations do not determine the metric uniquely, even if one knows what the metric tensor equals everywhere at an initial time. This situation is analogous to the failure of the Maxwell equations to determine the potentials uniquely. In both cases, the ambiguity can be removed by gauge fixing. Thus, coordinate conditions are a type of gauge condition. No coordinate condition is generally covariant, but many coordinate conditions are Lorentz covariant or rotationally covariant.
Naively, one might think that coordinate conditions would take the form of equations for the evolution of the four coordinates, and indeed in some cases (e.g. the harmonic coordinate condition) they can be put in that form. However, it is more usual for them to appear as four additional equations (beyond the Einstein field equations) for the evolution of the metric tensor. The Einstein field equations alone do not fully determine the evolution of the metric relative to the coordinate system. It might seem that they would since there are ten equations to determine the ten components of the metric. However, due to the second Bianchi identity of the Riemann curvature tensor, the divergence of the Einstein tensor is zero which means that four of the ten equations are redundant, leaving four degrees of freedom which can be associated with the choice of the four coordinates. The same result can be derived from a Kramers-Moyal-van-Kampen expansion of the Master equation (using the Clebsch–Gordan coefficients for decomposing tensor products).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Les mathématiques de la relativité générale se réfèrent à différentes structures et techniques mathématiques utilisées par la théorie de la relativité générale d'Albert Einstein. Les principaux outils utilisés dans cette théorie géométrique de la gravitation sont les champs tensoriels définis sur une variété pseudo-riemannienne représentant l'espace-temps.
En relativité restreinte et en relativité générale, une métrique est un invariant relativiste infinitésimal ayant la dimension d'une longueur. Mathématiquement, il s'agit d'un tenseur métrique relatif à la variété différentielle représentant l'espace-temps physique. En relativité générale, une métrique dans un référentiel contient toutes les informations sur la gravitation telle qu'elle y est perçue. Une métrique d'espace-temps s'exprime sous la forme d'une somme algébrique de carrés de formes différentielles linéaires.
A Poisson process P-lambda on R-d with causal structure inherited from the the usual Minkowski metric on R-d has a normalised discrete causal distance D-lambda (x, y) given by the height of the longest causal chain normalised by lambda(1/d)c(d). We prove t ...
We present an experimental and theoretical analysis of the self-and cross-Kerr effect of extended plasma resonances in Josephson junction chains. We calculate the Kerr coefficients by deriving and diagonalizing the Hamiltonian of a linear circuit model for ...
We present a multidomain pseudospectral method for the accurate and efficient time-domain computation of scattering by body-of-revolution (BOR) perfectly electrically conducting objects. In-the BOR formulation of the Maxwell equations, the azimuthal depend ...