CIVIL-459: Deep learning for autonomous vehiclesDeep Learning (DL) is the subset of Machine learning reshaping the future of transportation and mobility. In this class, we will show how DL can be used to teach autonomous vehicles to detect objects,
CS-456: Deep reinforcement learningThis course provides an overview and introduces modern methods for reinforcement learning (RL.) The course starts with the fundamentals of RL, such as Q-learning, and delves into commonly used approac
EE-311: Fundamentals of machine learningCe cours présente une vue générale des techniques d'apprentissage automatique, passant en revue les algorithmes, le formalisme théorique et les protocoles expérimentaux.
MICRO-512: Image processing IIStudy of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in Jupyter Notebooks; application to real-world examples in industrial vision and bio
MGT-424: Advanced data driven business analyticsThis course aims to provide graduate students a grounding in the methods, theory, mathematics and algorithms needed to apply machine learning techniques to in business analytics domain. The course cov
CS-423: Distributed information systemsThis course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.