Un multivibrateur est un oscillateur électronique dont un seul type d'élément stocke les charges qui circulent dans le circuit. thumb|Exemple de schéma de multivibrateur astable Le multivibrateur astable oscille en permanence entre deux états. Ci-contre un exemple de schéma de multivibrateur astable. Les sorties sont situées au niveau du collecteur de Q1 et de Q2. Si l'on néglige les temps de montée, le signal de sortie produit par le multivibrateur est un signal carré. Les sorties sont inversées l'une par rapport à l'autre. La durée de l'état 1 (sortie à l'état bas) est relié à la constante R2C1 correspondant à la charge de C1, et la durée de l'état 2 (sortie à l'état haut) sera reliée à R3C2 correspondant à la charge de C2. Vu qu'ici les charges des condensateurs sont indépendantes, il est aisé d'obtenir un rapport cyclique différent. La tension aux bornes d'un condensateur avec une charge initiale non nulle est donnée par : En regardant C2, juste avant que Q2 commute, la borne gauche de C2 est au potentiel base-émetteur de Q1 (VBE_Q1) et sa borne droite est à VCC ("VCC" est utilisé ici à la place de "+V" pour faciliter la lecture). La tension aux bornes de C2 est VCC moins VBE_Q1 . Juste après la commutation de Q2, la borne droite de C2 est maintenant à ce qui conduit l'autre borne de C2 à moins (VCC - VBE_Q1) ou VBE_Q1 - VCC. À cet instant, la borne gauche de C2 doit se charger de nouveau jusqu'à VBE_Q1. C'est le temps de cette charge qui va fixer la moitié de la période du multivibrateur (l'autre provenant de C1, est suivant le même raisonnement). Dans l'équation de charge d'un condensateur présentée au-dessus, en remplaçant les variables : on obtient : Ce qui nous donne une équation pour t : Pour que ce circuit fonctionne, VCC>>VBE_Q1 (par exemple: VCC=, VBE_Q1=), on peut alors simplifier l'équation précédente : ou ou La période de chaque «moitié» du multivibrateur est alors donnée par : t = ln(2) * RC. Une des plus célèbres réalisations de multivibrateur astable en technologie TTL est le circuit intégré NE555 (1970).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
EE-280: Electronics
Présentation des principaux composants de base de l'électronique. Analyse de circuits à base d'amplificateurs opérationnels. Introduction aux circuits logiques élémentaires. Principe de la conversion
EE-282: Initiation to electronics
Présentation des principaux composants de base de l'électroniques. Analyse de circuits à base d'amplificateurs opérationnels. Introduction aux circuits logiques élémentaires. Principe de la conversion
EE-336: Electronic circuits and systems
Ce cours présente l'analyse et la conception des circuits et systèmes électroniques sous forme discrète et intégrée. L'accent est mis sur les applications dans le domaine des télécommunications et dat
Afficher plus
Publications associées (33)
Concepts associés (10)
Amplificateur opérationnel
thumb|300px|Différents modèles d'amplificateurs opérationnels. thumb|300px|La représentation schématique d'un amplificateur opérationnel varie suivant les normes ANSI/IEEE et IEC 60617-13. Un amplificateur opérationnel (aussi dénommé ampli-op ou ampli op, AO, AOP, ALI ou AIL) est un amplificateur différentiel à grand gain : c'est un amplificateur électronique qui amplifie fortement une différence de potentiel électrique présente à ses entrées.
Bascule (circuit logique)
Une bascule est un circuit logique capable, dans certaines circonstances, de maintenir les valeurs de ses sorties malgré les changements de valeurs d'entrées, c'est-à-dire comportant un état « mémoire ». Il s'agit de l'élément qui permet le passage de la logique combinatoire à la logique séquentielle. On distingue deux catégories principales de bascules dans un système séquentiel : les bascules asynchrones et les bascules synchrones.
Bascule de Schmitt
Une bascule de Schmitt, aussi appelée trigger de Schmitt ou bascule à seuil, est un circuit logique inventé en 1934 par Otto Schmitt, ingénieur américain. C'est une bascule à trois entrées V, SB et SH et une sortie Q. Contrairement aux autres bascules, qui sont commandées en appliquant des signaux logiques à leurs entrées, la bascule de Schmitt est conçue pour être pilotée par une tension analogique, c'est-à-dire qu'il peut prendre n'importe quelle valeur (dans l'intervalle 0 - Vcc afin de ne pas dégrader le circuit).
Afficher plus
MOOCs associés (2)
Electronique II
Introduction à l’électronique analogique- seconde partie. Fonctions linéaires de base réalisée à l’aide de transistor bipolaire.
Electronique II
Introduction à l’électronique analogique- seconde partie. Fonctions linéaires de base réalisée à l’aide de transistor bipolaire.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.