Cours associés (13)
MSE-322: Building materials + Laboratory work
Science des matériaux de construction non métalliques les plus utilisés et plus particulièrement des matériaux cimentaires (béton). Composition chimique, fabrication et comportement sur la durée.
EE-806: Multi Agent Reinforcement Learning
The goal of the summer school are providing a rigorous introduction to the foundations of MARL and highlight the challenges that arise in the modern research directions in this area.
NX-414: Brain-like computation and intelligence
Recent advances in machine learning have contributed to the emergence of powerful models of animal perception and behavior. In this course we will compare the behavior and underlying mechanisms in the
CIVIL-414: Design of precast concrete structures
The course deals with the design of precast reinforced concrete structures, both for bridges and for buildings. The course is focused in learning by projects supplemented by some lectures by the teac
EE-735: Online learning in games
This course provides an overview of recent developments in online learning, game theory, and variational inequalities and their point of intersection with a focus on algorithmic development. The prima
BIO-620: Neuroeconomics / Decision Neuroscience
This course covers three major topics introducing: (1) fMRI methods, experimental designs and fMRI analysis; (2) recent research on cognitive and decision neuroscience in humans; (3) neuroimaging stud
CIVIL-430: Concrete bridges
Ce cours traite les principaux aspects de la conception et du dimensionnement des ponts en béton armé et précontraint. L'accent est mis sur les ponts poutres. Etude des aspects suivants : optimisation
CIVIL-522: Seismic engineering
This course deals with the main aspects of seismic design and assessment of buildings including conceptual design. It covers different structural design and evaluation philosophies for new and existin
CS-456: Deep reinforcement learning
This course provides an overview and introduces modern methods for reinforcement learning (RL.) The course starts with the fundamentals of RL, such as Q-learning, and delves into commonly used approac
BIO-615: Neural circuits for reward and aversion learning
Animals must learn from past experiences, to adapt their behavior to an ever-changing environment. Students will learn about the neuronal circuit mechanisms of reward-based learning, and of aversively

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.