Concept

Blade (geometry)

In the study of geometric algebras, a k-blade or a simple k-vector is a generalization of the concept of scalars and vectors to include simple bivectors, trivectors, etc. Specifically, a k-blade is a k-vector that can be expressed as the exterior product (informally wedge product) of 1-vectors, and is of grade k. In detail: A 0-blade is a scalar. A 1-blade is a vector. Every vector is simple. A 2-blade is a simple bivector. Sums of 2-blades are also bivectors, but not always simple. A 2-blade may be expressed as the wedge product of two vectors a and b: A 3-blade is a simple trivector, that is, it may be expressed as the wedge product of three vectors a, b, and c: In a vector space of dimension n, a blade of grade n − 1 is called a pseudovector or an antivector. The highest grade element in a space is called a pseudoscalar, and in a space of dimension n is an n-blade. In a vector space of dimension n, there are k(n − k) + 1 dimensions of freedom in choosing a k-blade for 0 ≤ k ≤ n, of which one dimension is an overall scaling multiplier. A vector subspace of finite dimension k may be represented by the k-blade formed as a wedge product of all the elements of a basis for that subspace. Indeed, a k-blade is naturally equivalent to a k-subspace endowed with a volume form (an alternating k-multilinear scalar-valued function) normalized to take unit value on the k-blade. In two-dimensional space, scalars are described as 0-blades, vectors are 1-blades, and area elements are 2-blades in this context known as pseudoscalars, in that they are elements of a one-dimensional space distinct from regular scalars. In three-dimensional space, 0-blades are again scalars and 1-blades are three-dimensional vectors, while 2-blades are oriented area elements. In this case 3-blades are called pseudoscalars and represent three-dimensional volume elements, which form a one-dimensional vector space similar to scalars. Unlike scalars, 3-blades transform according to the Jacobian determinant of a change-of-coordinate function.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.