File:Monotone Boolean functions 0,1,2,3.svg|400px|thumb|right|[[File:Loupe light.svg|15px|link=http://upload.wikimedia.org/wikipedia/commons/thumb/5/57/Monotone_Boolean_functions_0%2C1%2C2%2C3.svg/1500px-Monotone_Boolean_functions_0%2C1%2C2%2C3.svg.png]] The free distributive lattices of monotonic Boolean functions on 0, 1, 2, and 3 arguments, with 2, 3, 6, and 20 elements respectively (move mouse over right diagram to see description)
circle 659 623 30 [[File:Boolean function 0000 0000.svg|contradiction]]
circle 658 552 35 [[File:Boolean functions like 1000 0000.svg|A and B and C]]
circle 587 480 35 [[File:Boolean functions like 1000 1000.svg|A and B]]
circle 659 481 35 [[File:Boolean functions like 1010 0000.svg|A and C]]
circle 729 481 35 [[File:Boolean functions like 1100 0000.svg|B and C]]
circle 588 410 35 [[File:Boolean functions like 1010 1000.svg|(A and B) or (A and C)]]
circle 658 410 35 [[File:Boolean functions like 1100 1000.svg|(A and B) or (B and C)]]
circle 729 410 35 [[File:Boolean functions like 1110 0000.svg|(A and C) or (B and C)]]
circle 548 339 30 [[File:Boolean functions like 1010 1010.svg|A]]
circle 604 339 30 [[File:Boolean functions like 1100 1100.svg|B]]
circle 758 339 30 [[File:Boolean functions like 1111 0000.svg|C]]
circle 661 339 35 [[File:Boolean functions like 1110 1000.svg|(A or B) and (A or C) and (B or C) (A and B) or (A and C) or (B and C)]]
circle 588 268 35 [[File:Boolean functions like 1110 1010.svg|(A or B) and (A or C)]]
circle 659 267 35 [[File:Boolean functions like 1110 1100.svg|(A or B) and (B or C)]]
circle 729 268 35 [[File:Boolean functions like 1111 1000.svg|(A or C) and (B or C)]]
circle 588 197 35 [[File:Boolean functions like 1110 1110.svg|A or B]]
circle 658 197 35 [[File:Boolean functions like 1111 1010.svg|A or C]]
circle 729 197 35 [[File:Boolean functions like 1111 1100.svg|B or C]]
circle 658 126 35 [[File:Boolean functions like 1111 1110.svg|A or B or C]]
circle 659 56 30 [[File:Boolean function 1111 1111.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, plus précisément en théorie des ordres, une antichaîne est une partie d'un ensemble partiellement ordonné dont les éléments sont deux à deux incomparables. (Par opposition aux chaînes qui forment parties d'un ensemble dont les éléments sont toujours deux à deux comparables.) Dit autrement, soit E un ensemble muni d'une relation d'ordre ≤, un sous-ensemble A est une antichaîne de E si pour tout x,y de A, Une antichaîne est dite maximale si elle n'est incluse (strictement) dans aucune autre antichaîne.
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. As in the case of arbitrary lattices, one can choose to consider a distributive lattice L either as a structure of order theory or of universal algebra.