Concept

Fibonacci cube

In the mathematical field of graph theory, the Fibonacci cubes or Fibonacci networks are a family of undirected graphs with rich recursive properties derived from its origin in number theory. Mathematically they are similar to the hypercube graphs, but with a Fibonacci number of vertices. Fibonacci cubes were first explicitly defined in in the context of interconnection topologies for connecting parallel or distributed systems. They have also been applied in chemical graph theory. The Fibonacci cube may be defined in terms of Fibonacci codes and Hamming distance, independent sets of vertices in path graphs, or via distributive lattices. Like the hypercube graph, the vertices of the Fibonacci cube of order n may be labeled with bitstrings of length n, in such a way that two vertices are adjacent whenever their labels differ in a single bit. However, in a Fibonacci cube, the only labels that are allowed are bitstrings with no two consecutive 1 bits. If the labels of the hypercube are interpreted as binary numbers, the labels in the Fibonacci cube are a subset, the fibbinary numbers. There are Fn + 2 labels possible, where Fn denotes the nth Fibonacci number, and therefore there are Fn + 2 vertices in the Fibonacci cube of order n. The nodes of such a network may be assigned consecutive integers from 0 to Fn + 2 − 1; the bitstrings corresponding to these numbers are given by their Zeckendorf representations. The Fibonacci cube of order n is the simplex graph of the complement graph of an n-vertex path graph. That is, each vertex in the Fibonacci cube represents a clique in the path complement graph, or equivalently an independent set in the path itself; two Fibonacci cube vertices are adjacent if the cliques or independent sets that they represent differ by the addition or removal of a single element. Therefore, like other simplex graphs, Fibonacci cubes are median graphs and more generally partial cubes. The median of any three vertices in a Fibonacci cube may be found by computing the bitwise majority function of the three labels; if each of the three labels has no two consecutive 1 bits, the same is true of their majority.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.