We extend the group-theoretic notion of conditional flatness for a localization functor to any pointed category, and investigate it in the context of homological categories and of semi-abelian categories. In the presence of functorial fiberwise localizatio ...
In the recent years, considerable attention has been paid to preserving structures and invariants in reduced basis methods, in order to enhance the stability and robustness of the reduced system. In the context of Hamiltonian systems, symplectic model redu ...
Reduced basis methods are popular for approximately solving large and complex systems of dierential equations. However, conventional reduced basis methods do not generally preserve conservation laws and symmetries of the full order model. Here, we present ...
We study the possibility of realizing an effective sequestering between visible and hidden sectors in generic heterotic string models, generalizing previous work on orbifold constructions to smooth Calabi-Yau compactifications. In these theories, genuine s ...
In this work we address one of the phenomenological issues of beyond the Standard Model scenarios which embed Supersymmetry, namely the Supersymmetric Flavour Problem, in the context of String Theory. Indeed, the addition of new interactions to the Standar ...
Integral equation (IE) formulations.solved by the Method of Moments (MoM) have been used successfully to address a vast variety of electromagnetic problems. Printed circuits embedded partially or totally in laterally bounded multilayered media,such as micr ...
We perform a general analysis on the possibility of obtaining metastable vacua with spontaneously broken N = 1 supersymmetry and non-negative cosmological constant in the moduli sector of string models. More specifically, we study the condition under which ...