vignette|redresse=1.6|La catastrophe ultraviolette est l'erreur mise en évidence pour les courtes longueurs d'onde (correspondant à T > ) dans la loi de Rayleigh du modèle classique (courbe en noir), donnant l'énergie émise par un corps noir idéal (la courbe correcte est celle en bleue prédite par la loi de Planck).
La catastrophe ultraviolette est l'expression utilisée par le physicien autrichien Paul Ehrenfest pour qualifier les résultats des premières expériences qui étaient en contradiction avec la physique classique. Réalisées entre 1880 et 1900, ces expériences concernaient le rayonnement thermique émis par un corps chauffé, le rayonnement du corps noir.
L'échec de la résolution de ce problème à partir de modèles de la physique classique (lois de Wien et de Rayleigh-Jeans) poussera Max Planck à introduire un nouveau concept, le quantum d'énergie, qui sera à la base de la création d'une toute nouvelle physique, la physique quantique.
À la fin du , la quasi-totalité des phénomènes physiques étaient expliqués par deux théories : l'électromagnétisme de Maxwell et la gravitation de Newton. Dans les années 1880, des physiciens observent le rayonnement d'un corps en fonction de sa température, comme pour le fer qui devient rouge autour de puis blanc autour de .
Les travaux de Friedrich Paschen et Wilhelm Wien aboutissent en 1896 à la loi de Wien qui énonce que la longueur d'onde de la lumière la plus puissante émise par un corps noir est inversement proportionnelle à sa température. Ce modèle parvient alors à modéliser correctement l'émission spectrale du corps noir pour les longueurs d'onde suffisamment longues, mais ses prédictions divergent des résultats expérimentaux pour les longueurs d'onde plus faibles. En 1900, Lord Rayleigh montre que la puissance rayonnée est proportionnelle à la température absolue et inversement proportionnelle au carré de la longueur d'onde.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|303px|Au fur et à mesure que la température diminue, le sommet de la courbe de rayonnement du corps noir se déplace à des intensités plus faibles et des longueurs d'onde plus grandes. Le diagramme de rayonnement du corps noir est comparé avec le modèle classique de Rayleigh et Jeans. vignette|303px|La couleur (chromaticité) du rayonnement du corps noir dépend de la température du corps noir. Le lieu géométrique de telles couleurs, représenté ici en espace x,y CIE XYZ, est connu sous le nom de lieu géométrique de Planck.
En physique, un corps noir est un objet idéal qui absorbe parfaitement toute l'énergie électromagnétique (toute la lumière quelle que soit sa longueur d'onde) qu'il reçoit. Cette absorption se traduit par une agitation thermique qui provoque l'émission d'un rayonnement thermique, dit rayonnement du corps noir. La loi de Planck décrit le spectre de ce rayonnement, qui dépend uniquement de la température de l'objet.
La loi de Planck définit la distribution de luminance énergétique spectrale du rayonnement thermique du corps noir à l'équilibre thermique en fonction de sa température thermodynamique. La loi est nommée d'après le physicien allemand Max Planck, qui l'a formulée en 1900. C'est un résultat précurseur de la physique moderne et de la théorie quantique. La luminance énergétique spectrale d'une surface est le flux énergétique émis par la surface par unité d'aire de la surface projetée, par unité d'angle solide, par unité spectrale (fréquence, longueur d'onde, période, nombre d'onde et leurs équivalents angulaires).
Bolometry is an essential diagnostic for calculating the power balances and for the understanding of different physical aspects of tokamak experiments. The reconstruction method based on the Maximum Likelihood (ML) principle, developed initially for JET, h ...
We performed a unique Venus observation campaign to measure the disk brightness of Venus over a broad range of wavelengths in 2020 August and September. The primary goal of the campaign was to investigate the absorption properties of the unknown absorber i ...
We present the discovery of a gravitationally lensed dust-reddened QSO at z = 2.517, identified in a survey for QSOs by infrared selection. Hubble Space Telescope imaging reveals a quadruply lensed system in a cusp configuration, with a maximum image separ ...