Résumé
A power optimizer is a DC to DC converter technology developed to maximize the energy harvest from solar photovoltaic or wind turbine systems. They do this by individually tuning the performance of the panel or wind turbine through maximum power point tracking, and optionally tuning the output to match the performance of the string inverter (DC to AC inverter). Power optimizers are especially useful when the performance of the power generating components in a distributed system will vary widely, such as due to differences in equipment, shading of light or wind, or being installed facing different directions or widely separated locations. Power optimizers for solar applications can be similar to microinverters in that both systems attempt to isolate individual panels in order to improve overall system performance. A smart module is a power optimizer integrated into a solar module. A microinverter essentially combines a power optimizer with a small inverter in a single enclosure that is used on every panel, while the power optimizer leaves the inverter in a separate box and uses only one inverter for the entire array. The claimed advantage to this "hybrid" approach is lower overall system costs, avoiding the distribution of electronics. Most energy production or storage devices have a complex relationship between the power they produce, the load placed on them, and the efficiency of the delivery. A conventional battery, for instance, stores energy in chemical reactions in its electrolytes and plates. These reactions take time to occur, which limits the rate at which the power can be efficiently drawn from the cell. For this reason, large batteries used for power storage generally list two or more capacities, normally the "2 hour" and "20 hour" rates, with the 2 hour rate often being around 50% of the 20 hour rate. Solar panels have similar issues due to the speed at which the cell can convert solar photons into electrons, ambient temperature, and a host of other issues.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.