Concept

Inversion du champ magnétique terrestre

L'inversion du champ magnétique terrestre (également appelé champ géomagnétique) est un phénomène récurrent dans l'histoire géologique terrestre, le pôle Nord magnétique se déplace au pôle Sud géographique, et inversement. C'est le résultat d'une perturbation de la stabilité du noyau de la Terre. Le champ géomagnétique s’affole alors pendant une courte période (de ) pendant laquelle les pôles magnétiques se déplacent rapidement sur toute la surface du globe, ou disparaissent, selon les théories. Au cours de cette transition, l'intensité du champ géomagnétique est très faible et la surface de la planète peut être exposée au vent solaire, potentiellement dangereux pour les organismes vivants. Si cela se produisait aujourd'hui, de nombreuses technologies utilisant le champ géomagnétique pourraient aussi être affectées. À la fin de cette période de transition, soit les pôles magnétiques reprennent leurs positions initiales, il s'agit alors seulement d'une excursion géomagnétique, soit ils permutent et on parle alors d'inversion. Le champ terrestre s'est inversé environ ces millions d'années. La dernière inversion est survenue il y a et la dernière excursion il y a , personne ne sait quand la prochaine se produira. C'est en 1905 que Bernard Brunhes montre que certaines roches volcaniques ont été aimantées dans la direction opposée à celle du champ magnétique terrestre local ; il en conclut que le champ peut s'inverser. La première estimation du calendrier des inversions magnétiques est faite dans les années 1920 par Motonori Matuyama, qui observe que les roches avec des champs inversés datent toutes du début du Pléistocène ou d'avant. À l'époque, la polarité du champ terrestre est mal comprise et la possibilité d'inversions suscite peu d'intérêt. Mais plus tard, lorsque le champ magnétique terrestre est mieux compris, des théories plus avancées suggèrent que le champ terrestre pourrait avoir été inversé dans le passé lointain. La plupart des recherches paléomagnétiques de la fin des années 1950 comprennent un examen de l'errance des pôles et de la dérive des continents.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
PHYS-114: General physics: electromagnetism
The course first develops the basic laws of electricity and magnetism and illustrates the use in understanding various electromagnetic phenomena.
Séances de cours associées (32)
Effet de Kerr Magneto-optique: Fondements et applications
Couvre les fondamentaux de l'effet Kerr Magneto-optique (MOKE) et ses applications dans les processus d'aimantation ultrarapide et la spectroscopie optique magnétique.
Conception et opérations de la mission spatiale
Explore la conception des missions spatiales, le champ magnétique de la Terre, l'activité solaire et les effets des rayonnements cosmiques.
Aimants mous: Applications et mécanismes de perte
Explore la définition et les applications des aimants souples, y compris leur utilisation dans les transformateurs et l'optimisation des pertes dans les applications AC.
Afficher plus
Publications associées (75)

Magnon-Assisted Magnetization Reversal of Ni81Fe19 Nanostripes on Y3Fe5O12 with Different Interfaces

Dirk Grundler, Andrea Mucchietto, Korbinian Baumgärtl

Magnetic bit writing by short-wave magnons without conversion to the electrical domain is expected to be a game-changer for in-memory computing architectures. Recently, the reversal of nanomagnets by propagating magnons was demonstrated. However, experimen ...
2024

A reduced-order, rotation-based model for thin hard-magnetic plates

Pedro Miguel Nunes Pereira de Almeida Reis, Dong Yan, Bastien Freddy Gustave Aymon

We develop a reduced-order model for thin plates made of hard magnetorheological elastomers (hard-MREs), which are composed of hard-magnetic particles embedded in a polymeric matrix. First, we propose a new magnetic potential, as an alternative to an exist ...
PERGAMON-ELSEVIER SCIENCE LTD2023

Twisted chiral superconductivity in photodoped frustrated Mott insulators

Markus Müller, Jiajun Li

Recent advances in ultrafast pump-probe spectroscopy provide access to hidden phases of correlated matter, including light-induced superconducting states. The theoretical understanding of these nonequilibrium phases remains limited, particularly for correl ...
AMER PHYSICAL SOC2023
Afficher plus
Concepts associés (18)
Anomalie magnétique
vignette|L'anomalie magnétique de Koursk (au nord) et l'anomalie de Bangui (Afrique), enregistrées par satellites. Les anomalies magnétiques résultent de la fossilisation du champ magnétique par les basaltes de la croûte océanique. Lorsque les roches riches en corps ferromagnétiques se mettent en place, elles fossilisent le champ magnétique existant. Dans tous les océans, les anomalies positives et négatives s'organisent en bandes parallèles.
Magnétostratigraphie
La magnétostratigraphie est une approche stratigraphique basée sur la reconnaissance de « magnétozones », des ensembles sédimentaires diachrones portant un signal paléomagnétique. Le champ magnétique terrestre connaît des inversions de polarité plus ou moins fréquentes à l'échelle des temps géologiques. Ces inversions étant enregistrées dans les sédiments, les minéraux magnétiques en deviennent des indicateurs. Ils permettent d'affiner la chronologie des étages de fossiles et d'autres évènements géologiques ayant laissé des traces.
Geomagnetic excursion
A geomagnetic excursion, like a geomagnetic reversal, is a significant change in the Earth's magnetic field. Unlike reversals, an excursion is not a "permanent" re-orientation of the large-scale field, but rather represents a dramatic, typically a (geologically) short-lived change in field intensity, with a variation in pole orientation of up to 45° from the previous position. Excursion events typically only last a few thousand to a few tens of thousands of years, and often involve declines in field strength to between 0 and 20% of normal.
Afficher plus