Stream power, originally derived by R. A. Bagnold in the 1960s, is the amount of energy the water in a river or stream is exerting on the sides and bottom of the river. Stream power is the result of multiplying the density of the water, the acceleration of the water due to gravity, the volume of water flowing through the river, and the slope of that water. There are many forms of the stream power formula with varying utilities, such as comparing rivers of various widths or quantifying the energy required to move sediment of a certain size. Stream power is closely related to other criteria such as stream competency and shear stress. Stream power is a valuable measurement for hydrologists and geomorphologists tackling sediment transport issues as well as for civil engineers, who use it in the planning and construction of roads, bridges, dams, and culverts. Although many authors had suggested the use of power formulas in sediment transport in the decades preceding Bagnold's work, and in fact Bagnold himself suggested it a decade before putting it into practice in one of his other works, it wasn't until 1966 that R. A. Bagnold tested this theory experimentally to validate whether it would indeed work or not. This was successful and since then, many variations and applications of stream power have surfaced. The lack of fixed guidelines on how to define stream power in this early stage lead to many authors publishing work under the name "stream power" while not always measuring the entity in the same way; this led to partially failed efforts to establish naming conventions for the various forms of the formula by Rhoads two decades later in 1986. Today stream power is still used and new ways of applying it are still being discovered and researched, with a large integration into modern numerical models utilizing computer simulations. It can be derived by the fact that if the water is not accelerating and the river cross-section stays constant (generally good assumptions for an averaged reach of a stream over a modest distance), all of the potential energy lost as the water flows downstream must be used up in friction or work against the bed: none can be added to kinetic energy.