Volkan CevherVolkan Cevher received the B.Sc. (valedictorian) in electrical engineering from Bilkent University in Ankara, Turkey, in 1999 and the Ph.D. in electrical and computer engineering from the Georgia Institute of Technology in Atlanta, GA in 2005. He was a Research Scientist with the University of Maryland, College Park from 2006-2007 and also with Rice University in Houston, TX, from 2008-2009. Currently, he is an Associate Professor at the Swiss Federal Institute of Technology Lausanne and a Faculty Fellow in the Electrical and Computer Engineering Department at Rice University. His research interests include machine learning, signal processing theory, optimization theory and methods, and information theory. Dr. Cevher is an ELLIS fellow and was the recipient of the Google Faculty Research award in 2018, the IEEE Signal Processing Society Best Paper Award in 2016, a Best Paper Award at CAMSAP in 2015, a Best Paper Award at SPARS in 2009, and an ERC CG in 2016 as well as an ERC StG in 2011.
Anthony Christopher DavisonAnthony Davison has published on a wide range of topics in statistical theory and methods, and on environmental, biological and financial applications. His main research interests are statistics of extremes, likelihood asymptotics, bootstrap and other resampling methods, and statistical modelling, with a particular focus on the first currently. Statistics of extremes concerns rare events such as storms, high winds and tides, extreme pollution episodes, sporting records, and the like. The subject has a long history, but under the impact of engineering and environmental problems has been an area of intense development in the past 20 years. Davison''s PhD work was in this area, in a project joint between the Departments of Mathematics and Mechanical Engineering at Imperial College, with the aim of modelling potential high exposures to radioactivity due to releases from nuclear installations. The key tools developed, joint with Richard Smith, were regression models for exceedances over high thresholds, which generalized earlier work by hydrologists, and formed the basis of some important later developments. This has led to an ongoing interest in extremes, and in particular their application to environmental and financial data. A major current interest is the development of suitable methods for modelling rare spatio-temporal events, particularly but not only in the context of climate change. Likelihood asymptotics too have undergone very substantial development since 1980. Key tools here have been saddlepoint and related approximations, which can give remarkably accurate approximate distribution and density functions even for very small sample sizes. These approximations can be used for wide classes of parametric models, but also for certain bootstrap and resampling problems. The literature on these methods can seem arcane, but they are potentially widely applicable, and Davison wrote a book joint with Nancy Reid and Alessandra Brazzale intended to promote their use in applications. Bootstrap methods are now used in many areas of application, where they can provide a researcher with accurate inferences tailor-made to the data available, rather than relying on large-sample or other approximations of doubtful validity. The key idea is to replace analytical calculations of biases, variances, confidence and prediction intervals, and other measures of uncertainty with computer simulation from a suitable statistical model. In a nonparametric situation this model consists of the data themselves, and the simulation simply involves resampling from the existing data, while in a parametric case it involves simulation from a suitable parametric model. There is a wide range of possibilities between these extremes, and the book by Davison and Hinkley explores these for many data examples, with the aim of showing how and when resampling methods succeed and why they can fail. He was Editor of Biometrika (2008-2017), Joint Editor of Journal of the Royal Statistical Society, series B (2000-2003), editor of the IMS Lecture Notes Monograph Series (2007), Associate Editor of Biometrika (1987-1999), and Associate Editor of the Brazilian Journal of Probability and Statistics (1987 2006). Currently he on the editorial board of Annual Reviews of Statistics and its Applications. He has served on committees of Royal Statistical Society and of the Institute of Mathematical Statistics. He is an elected Fellow of the American Statistical Assocation and of the Institute of Mathematical Statistics, an elected member of the International Statistical Institute, and a Chartered Statistician. In 2009 he was awarded a laurea honoris causa in Statistical Science by the University of Padova, in 2011 he held a Francqui Chair at Hasselt University, and in 2012 he was Mitchell Lecturer at the University of Glasgow. In 2015 he received the Guy Medal in Silver of the Royal Statistical Society and in 2018 was a Medallion Lecturer of the Institute of Mathematical Statistics.
Martin VetterliMartin Vetterli a été nommé Président de l'École polytechnique fédérale de Lausanne (EPFL) par le Conseil fédéral à l’issue d’un processus de sélection mené par le Conseil des EPF - qui l'a désigné à l'unanimité.
Né à Soleure le 4 octobre 1957, Martin Vetterli a suivi sa scolarité et effectué sa maturité dans le canton de Neuchâtel. Ingénieur en génie électrique de l’ETHZ (1981), diplômé de l’Université de Stanford (1982) et docteur en sciences de l’EPFL (1986), Martin Vetterli a enseigné à Columbia University comme professeur assistant puis associé. Il a ensuite été nommé professeur ordinaire au département du génie électrique et des sciences de l’informatique de l’Université de Berkeley, avant de revenir à l’EPFL en tant que professeur ordinaire à l’âge de 38 ans. Il a également enseigné à l’ETHZ et à l’Université de Stanford.
Ses activités de recherche centrées sur le génie électrique, les sciences de l’informatique et les mathématiques appliquées lui ont valu de nombreuses récompenses nationales et internationales, parmi lesquelles le Prix Latsis National, en 1996. Il est Fellow de l’Association for Computing Machinery et de l'Institute of Electrical and Electronics Engineers et membre de la National Academy of Engineering (NAE) notamment. Martin Vetterli a publié plus de 170 articles et trois ouvrages de référence.
Ses travaux sur la théorie des ondelettes, utilisées dans le traitement du signal, sont reconnus par ses pairs comme étant d’une portée majeure, et ses domaines de prédilection, comme la compression des images et vidéos ou les systèmes de communication auto-organisés, sont au cœur du développement des nouvelles technologies de l’information. En tant que directeur fondateur du Pôle de Recherche National Systèmes mobiles d’information et de communication, le professeur Vetterli est un fervent défenseur de la recherche transdisciplinaire.
Martin Vetterli connaît l’EPFL de l’intérieur. Alumnus de l’Ecole, il y enseigne depuis 1995, a été le vice-président chargé des relations internationales puis des affaires institutionnelles de l’Ecole entre 2004 à 2011, et doyen de la Faculté Informatique et Communication en 2011 et 2012. En parallèle à sa fonction de président du Conseil national de la recherche du Fonds national suisse qu’il a occupé de 2013 à 2016, il dirige le Laboratoire de Communications Audiovisuelles (LCAV) de l’EPFL depuis 1995.
Martin Vetterli a accompagné plus de 60 doctorants en Suisse et aux Etats-Unis pendant leur thèse et se fait un point d’honneur de suivre l’évolution de leur parcours au plus haut niveau, académique ou dans le monde entrepreneurial.
L’ingénieur est l’auteur d’une cinquantaine de brevets qui ont conduit à la création de plusieurs startups issues de son laboratoire, comme Dartfish ou Illusonic, ainsi qu’à des transferts de technologie par le biais de vente de brevets (Qualcomm). Il encourage activement les jeunes chercheurs à poursuivre ces efforts et commercialiser les résultats de leurs travaux.
Stephan MorgenthalerEDUCATION
Ph.D., Statistics, Princeton University, Princeton, 1983
Diplôme, Mathématiques, Ecole polytechnique fédérale de Zurich, 1979
CARRIÈRE ACADEMIQUE
Professeur de statistique appliquée, EPFL, 1991-présent
Professeur extraordinaire, statistique appliquée, EPFL, 1988-1991
Professeur associé, statistique, Yale University, 1987-1988
Professeur assistant, statistique, Yale University, 1984-1987
Instructor, mathématiques, Massachusetts Institute of Technology, 1983-1984