Weyl equationIn physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions. None of the elementary particles in the Standard Model are Weyl fermions. Previous to the confirmation of the neutrino oscillations, it was considered possible that the neutrino might be a Weyl fermion (it is now expected to be either a Dirac or a Majorana fermion).
Particule de MajoranaEn physique des particules, une particule de Majorana ou fermion de Majorana est un fermion qui est sa propre antiparticule. Ces particules sont nommées en hommage au physicien Ettore Majorana, qui a proposé ce modèle en établissant l'équation qui porte son nom. Ce terme est parfois utilisé en opposition aux particules de Dirac (ou fermions de Dirac) qui ont une antiparticule différente d'elles-mêmes. En 1928, Paul Dirac publie l'article qui contient l'équation de Dirac.
Neutrino électroniqueLe neutrino électronique est un lepton qui n'a pas de charge électrique. Avec l'électron, il constitue la première génération de leptons, d'où le nom de « neutrino électronique ». Le neutrino électronique a d'abord été théorisé par Wolfgang Pauli en 1930, pour tenir compte de la non-conservation de la quantité de mouvement et de l'énergie dans la désintégration bêta, et a été découvert en 1956 par une équipe dirigée par Clyde Cowan et Frederick Reines (voir Expérience du neutrino de Cowan et Reines).
Weyl semimetalWeyl fermions are massless chiral fermions embodying the mathematical concept of a Weyl spinor. Weyl spinors in turn play an important role in quantum field theory and the Standard Model, where they are a building block for fermions in quantum field theory. Weyl spinors are a solution to the Dirac equation derived by Hermann Weyl, called the Weyl equation. For example, one-half of a charged Dirac fermion of a definite chirality is a Weyl fermion. Weyl fermions may be realized as emergent quasiparticles in a low-energy condensed matter system.
Fermionic fieldIn quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bosonic fields. The most prominent example of a fermionic field is the Dirac field, which describes fermions with spin-1/2: electrons, protons, quarks, etc. The Dirac field can be described as either a 4-component spinor or as a pair of 2-component Weyl spinors.
Spin-1/2In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of 1/2. The spin number describes how many symmetrical facets a particle has in one full rotation; a spin of 1/2 means that the particle must be rotated by two full turns (through 720°) before it has the same configuration as when it started. Particles having net spin 1/2 include the proton, neutron, electron, neutrino, and quarks.
Dirac spinorIn quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group. Dirac spinors are important and interesting in numerous ways. Foremost, they are important as they do describe all of the known fundamental particle fermions in nature; this includes the electron and the quarks.
Chirality (physics)A chiral phenomenon is one that is not identical to its (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry. Helicity (particle physics) The helicity of a particle is positive (“right-handed”) if the direction of its spin is the same as the direction of its motion.
Quasi-particuleLes quasi-particules, ou quasiparticules, sont des entités conçues comme des particules et facilitant la description des systèmes de particules, particulièrement en physique de la matière condensée. Parmi les plus connues, on distingue les trous d'électrons qui peuvent être vus comme un "manque d'électron", et les phonons, qui décrivent des "paquets de vibration". Les solides sont formés de trois types de particules : les électrons, les protons et les neutrons.
FermionEn physique des particules, un fermion (nom attribué par Paul Dirac d'après Enrico Fermi) est une particule de spin demi-entier (c'est-à-dire 1/2, 3/2, 5/2...). Elle obéit à la statistique de Fermi-Dirac. Un fermion peut être une particule élémentaire, tel l'électron, ou une particule composite, tel le proton, ou toutes leurs antiparticules. Toutes les particules élémentaires observées sont soit des fermions, soit des bosons (l'hypothétique matière noire, encore non observée en , n'est actuellement pas catégorisée).