The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. In quantum field theory, the ground state is usually called the vacuum state or the vacuum.
If more than one ground state exists, they are said to be degenerate. Many systems have degenerate ground states. Degeneracy occurs whenever there exists a unitary operator that acts non-trivially on a ground state and commutes with the Hamiltonian of the system.
According to the third law of thermodynamics, a system at absolute zero temperature exists in its ground state; thus, its entropy is determined by the degeneracy of the ground state. Many systems, such as a perfect crystal lattice, have a unique ground state and therefore have zero entropy at absolute zero. It is also possible for the highest excited state to have absolute zero temperature for systems that exhibit negative temperature.
In one dimension, the ground state of the Schrödinger equation can be proven to have no nodes.
Consider the average energy of a state with a node at x = 0; i.e., ψ(0) = 0. The average energy in this state would be
where V(x) is the potential.
With integration by parts:
Hence in case that is equal to zero, one gets:
Now, consider a small interval around ; i.e., . Take a new (deformed) wave function ψ(x) to be defined as , for ; and , for ; and constant for . If is small enough, this is always possible to do, so that ψ(x) is continuous.
Assuming around , one may write
where is the norm.
Note that the kinetic-energy densities hold everywhere because of the normalization. More significantly, the average kinetic energy is lowered by by the deformation to ψ.
Now, consider the potential energy. For definiteness, let us choose . Then it is clear that, outside the interval , the potential energy density is smaller for the ψ because there.
On the other hand, in the interval we have
which holds to order .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
vignette|Noyau atomique de l'hélium.Le noyau atomique est la région située au centre d'un atome, constituée de protons et de neutrons (les nucléons). La taille du noyau (de l'ordre du femtomètre, soit ) est environ plus petite que celle de l'atome () et concentre quasiment toute sa masse. Les forces nucléaires qui s'exercent entre les nucléons sont à peu près un million de fois plus grandes que les forces entre les atomes ou les molécules. Les noyaux instables, dits radioactifs, sont ceux d'où s'échappent des neutrons.
La constante de Rydberg, nommée en l'honneur du physicien Johannes Rydberg, est une constante physique découverte en mesurant le spectre de l'hydrogène. Son unité est le mètre à la puissance moins un (m). Elle est définie à partir des résultats d'Anders Jonas Ångström et Johann Jakob Balmer. Chaque élément chimique a sa propre constante de Rydberg, qui peut être obtenue à partir de la constante de Rydberg.
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
This course will introduce students to the field of organic electronic materials. The goal of this course is to discuss the origin of electronic properties in organic materials, charge transport mecha
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
Quantum optics studies how photons interact with other forms of matter, the understanding of which was crucial for the development of quantum mechanics as a whole. Starting from the photoelectric effect, the quantum property of light has led to the develop ...
Tip-enhanced Raman spectroscopy (TERS) under ultrahigh vacuum and cryogenic conditions enables exploration of the relations between the adsorption geometry, electronic state, and vibrational fingerprints of individual molecules. TERS capability of reflecti ...
Charge separation processes in organic semiconductors play a pivotal role in diverse applications ranging from photovoltaics to photocatalysis. Understanding these mechanisms, particularly the role of hybrid charge-transfer (CT) states, is essential for ad ...