Publications associées (42)

Concept Discovery for The Interpretation of Landscape Scenicness

Devis Tuia

In this paper, we study how to extract visual concepts to understand landscape scenicness. Using visual feature representations from a Convolutional Neural Network (CNN), we learn a number of Concept Activation Vectors (CAV) aligned with semantic concepts ...
2020

Deep Micro-Dictionary Learning and Coding Network

Yan Yan, Wei Wang, Wei Xiao

In this paper, we propose a novel Deep Micro-Dictionary Learning and Coding Network (DDLCN). DDLCN has most of the standard deep learning layers (pooling, fully, connected, input/output, etc.) but the main difference is that the fundamental convolutional l ...
IEEE2019

Kamusi Pre:D – Lexicon-based source-side predisambiguation for MT and other text processing applications

Martin Benjamin

Kamusi has been developing a system to analyze texts on the source side and present users with sense-specified dictionary options. Similarly to spellcheck, the user selects the intended meaning. We then use a multilingual lexical database to bridge to matc ...
ENeL2016

Sparse Hidden Markov Models for Exemplar-based Speech Recognition Using Deep Neural Network Posterior Features

Hervé Bourlard, Afsaneh Asaei, Pranay Dighe

Statistical speech recognition has been cast as a natural realization of the compressive sensing and sparse recovery. The compressed acoustic observations are sub-word posterior probabilities obtained from a deep neural network (DNN). Dictionary learning a ...
2015

Parametric dictionary learning for graph signals

Pascal Frossard, David Shuman

We propose a parametric dictionary learning algorithm to design structured dictionaries that sparsely represent graph signals. We incorporate the graph structure by forcing the learned dictionaries to be concatenations of subdictionaries that are polynomia ...
2013

Sparse Approximation Using M-Term Pursuit and Application in Image and Video Coding

Pascal Frossard, Pierre Vandergheynst, Adel Rahmoune

This paper introduces a novel algorithm for sparse approximation in redundant dictionaries called the M-term pursuit (MTP). This algorithm decomposes a signal into a linear combination of atoms that are selected in order to represent the main signal compon ...
Institute of Electrical and Electronics Engineers2012

Use of Learned Dictionaries in Tomographic Reconstruction

Martin Vetterli, Ivana Jovanovic, Vincent Etter

We study the use and impact of a dictionary in a tomographic reconstruction setup. First, we build two different dictionaries: one using a set of bases functions (Discrete Cosine Transform), and the other that is learned using patches extracted from traini ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2011

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.