Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'évaluation du gradient des politiques avec un horizon en 1 étape, met à jour les règles, les comparaisons avec Perceptron et la biologie, et les techniques de généralisation.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Explore le développement historique et la formation de perceptrons multicouches, en mettant l'accent sur l'algorithme de rétropropagation et la conception de fonctionnalités.
Couvre les perceptrons multicouches (MLP) et leur application de la classification à la régression, y compris le théorème d'approximation universelle et les défis liés aux gradients.
Discute de la différenciation automatique, en mettant l'accent sur la différenciation en mode inverse pour optimiser les filtres de couche convolutifs par descente de gradient.
Explore le modèle de perceptron multicouche, la formation, l'optimisation, le prétraitement des données, les fonctions d'activation, la rétropropagation et la régularisation.