Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In cosmology, baryon acoustic oscillations (BAO) are fluctuations in the density of the visible baryonic matter (normal matter) of the universe, caused by acoustic density waves in the primordial plasma of the early universe. In the same way that supernovae provide a "standard candle" for astronomical observations, BAO matter clustering provides a "standard ruler" for length scale in cosmology. The length of this standard ruler is given by the maximum distance the acoustic waves could travel in the primordial plasma before the plasma cooled to the point where it became neutral atoms (the epoch of recombination), which stopped the expansion of the plasma density waves, "freezing" them into place. The length of this standard ruler (≈490 million light years in today's universe) can be measured by looking at the large scale structure of matter using astronomical surveys. BAO measurements help cosmologists understand more about the nature of dark energy (which causes the accelerating expansion of the universe) by constraining cosmological parameters. The early universe consisted of a hot, dense plasma of electrons and baryons (which include protons and neutrons). Photons (light particles) traveling in this universe were essentially trapped, unable to travel for any considerable distance before interacting with the plasma via Thomson scattering. The average distance which a photon could travel before interacting with the plasma is known as the mean free path of the photon. As the universe expanded, the plasma cooled to below 3000 K—a low enough energy such that the electrons and protons in the plasma could combine to form neutral hydrogen atoms. This recombination happened when the universe was around 379,000 years old, or at a redshift of z = 1089. Photons interact to a much lesser degree with neutral matter, and therefore at recombination the universe became transparent to photons, allowing them to decouple from the matter and free-stream through the universe.
Stewart Cole, Xin Chen, Jean-Paul Richard Kneib, Eduardo Sanchez, Zheng Zheng, Andrei Variu, Daniel Felipe Forero Sanchez, Antoine Philippe Jacques Rocher, Hua Zhang, Sun Hee Kim, Cheng Zhao, Anand Stéphane Raichoor, David Schlegel, Jiangyan Yang, Ting Tan, Zhifeng Ding, Julien Guy, Arjun Dey
Jean-Paul Richard Kneib, Huanyuan Shan, Nan Li
Andrei Variu, Cheng Zhao, Anand Stéphane Raichoor, David Schlegel, Julien Guy