Quantum Monte Carlo encompasses a large family of computational methods whose common aim is the study of complex quantum systems. One of the major goals of these approaches is to provide a reliable solution (or an accurate approximation) of the quantum many-body problem. The diverse flavors of quantum Monte Carlo approaches all share the common use of the Monte Carlo method to handle the multi-dimensional integrals that arise in the different formulations of the many-body problem.
Quantum Monte Carlo methods allow for a direct treatment and description of complex many-body effects encoded in the wave function, going beyond mean-field theory. In particular, there exist numerically exact and polynomially-scaling algorithms to exactly study static properties of boson systems without geometrical frustration. For fermions, there exist very good approximations to their static properties and numerically exact exponentially scaling quantum Monte Carlo algorithms, but none that are both.
In principle, any physical system can be described by the many-body Schrödinger equation as long as the constituent particles are not moving "too" fast; that is, they are not moving at a speed comparable to that of light, and relativistic effects can be neglected. This is true for a wide range of electronic problems in condensed matter physics, in Bose–Einstein condensates and superfluids such as liquid helium. The ability to solve the Schrödinger equation for a given system allows prediction of its behavior, with important applications ranging from materials science to complex biological systems.
The difficulty is however that solving the Schrödinger equation requires the knowledge of the many-body wave function in the many-body Hilbert space, which typically has an exponentially large size in the number of particles. Its solution for a reasonably large number of particles is therefore typically impossible, even for modern parallel computing technology in a reasonable amount of time.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.