Cyril CayronMes recherches: J'ai travaillé comme microscopiste/cristallographe/métallurgiste sur des projets très variés comme les aciers pour le nucléaire, les alliages titane et nickel pour l'aéronautique, les interconnections en cuivre pour la microélectronique, les piles à combustible haute et basse température, le silicium photovoltaïque hétérojonction et monolike, les batteries au lithium à base de LiFePO4 et silicium. Derrière la plupart de ces sujets de recherche appliquée se cachent des problèmes de recherche fondamentale comme celui lié aux transformations de phases. J'ai donc été amené à travailler sur ce sujet passionnant et j'ai pu démontrer que les variants cristallographiques générés par des transitions structurales forment une structure algébrique de groupoïde. Ces travaux ont mené au développement du logiciel de reconstruction des grains parents à partir de données EBSD appelé ARPGE et distribué dans plus de 20 pays. En 2013-2015 j'ai proposé un nouveau modèle cristallographique pour les transformations martensitiques fcc-bcc dans les aciers, comme une alternative à la théorie phénoménologique de la transformation martensitique. Ce modèle a été depuis étendu aux transformations fcc-hcp (type cobalt), bcc-hcp (type titane) et bcc-fcc (type laiton), ainsi qu’à differents modes de maclage mécanique dans les métaux fcc et hcp. Ce modèle à sphères dures montre que la transformation implique une «distorsion angulaire», forme plus générale que le cisaillement. Le modèle prévoit la possibilité que le plan d’interface de certaines macles mécaniques ne soit pas un plan invariant. Un tel cas de maclage « exotique » a été observé expérimentalement par EBSD en 2017 dans un monocristal de magnésium pur. Je travaille maintenant à définir de manière algébrique les concepts de variants (orientation, distortion, correspondance), et sur les types de macles mécaniques (I, II, et d'autres oubliés des théoriques classiques). Mon parcours : 2014-maintenant: Collaborateur scientifique à l'EPFL/LMTM, Neuchâtel, Suisse. J'aide le professeur Roland Logé dans ses travaux de recherche sur les liens entre les fortes déformations, les textures, les tailles de grains et les transformations de phases (diffusives et displacives). Je suis en charge de la salle de métallographie et des caractérisations SEM, EDS, EBSD, TEM, HRTEM. Je codirige trois thèses (Annick Baur, Margaux Larcher, Céline Guidoux). Je suis reviewer pour Acta Mater., Scripta Mater., Acta Cryst., J. Appl. Cryst., Mater. Charact., etc. 2000-2014: Ingénieur de recherche et responsable du groupe Nanocaractérisation, CEA/LITEN, Grenoble, France. 2012 : Habilitation à Diriger des Recherches (HDR). 1996-2000: Thèse sur l'étude par microscopie électronique de composites à matrice aluminium. Directeur de thèse Philippe Buffat, CIME, EPFL, Lausanne, Suisse. J'ai pu montrer un lien cristallographique entre différentes phases des alliages 2xxx et 6xxx et proposer pour la première fois une structure complète pour la phase beta prime des nanoprécipités. 1995-1996: Scientifique du contingent, travail sur les écrans électrochromes, COGIDEV, Rueil-Malmaison, France, fondé par M. André Giraud, ancien ministre de la défense et ancien ministre de l’industrie. 1992-1995: Ecole Nationale Supérieure des Mines de Nancy, France
Philippe SpätigPhilippe Spätig is currently Adjunct Professor at EPFL in the School of Basic Sciences, in the Laboratory of Reactor Physics and Systems Behaviours. He obtained his diploma of Engineer Physicist at EPFL in 1991 and his PhD at EPFL in 1995 on the role of thermal activation in the plasticity of the intermetallic Ni3Al. From 1995 to 1997, he worked as postdoc in the Materials Group of the Center for Research in Plasma Physics at EPFL, studying the effects of high-energy proton irradiation on alloys and pure metals. He then moved to the University of California Santa Barbara and spent two years in the group of Professor G.R. Odette, working on fracture mechanics of ferritic structural steels. He joined again the Materials Group of the Center for Research in Plasma Physics at EPFL in 2000 and worked in this group until the end of 2012. His research was focused on irradiation hardening and embrittlement of steels, as well as on the development of oxide dispersion strengthened steels. He also worked and developed experimental and analytical small specimen test techniques to reliably extract mechanical properties from limited material volume. In 2013, he joined the Laboratory for Nuclear Materials at Paul Scherrer Institute, while being associated with the Laboratory for Reactor Physics and System Behaviours at EPFL. Since then he mainly works on environmentally-assisted fatigue and fracture on austenitic and pressure vessel steels, where the effects of light water reactor environment on mechanical properties are investigated.
Roland LogéRoland Logé is an associate professor at EPFL, with a primary affiliation to the Materials Institute, and a secondary affiliation to the Microengineering Institute.
After graduating in 1994 at UCL (Belgium) in Materials Engineering, he earned a Master of Science in Mechanics in 1995, at UCSB Santa Barbara (USA). He received his PhD at Mines Paristech-CEMEF (France) in 1999, where he specialized in metal forming and associated microstructure evolutions. After a postdoc at Cornell University (USA) between 1999 and 2001, he entered CNRS in France.
In 2008, he was awarded the ALCAN prize from the French Academy of Sciences, together with Yvan Chastel.
In 2009 he became head of the Metallurgy-Structure-Rheology research group at CEMEF.
In 2011, he launched a “Groupement de Recherche” (GDR), funded by CNRS, networking most of the researchers in France involved in recrystallization and grain growth.
In 2013, he became Research Director at CNRS.
In March 2014 he joined EPFL as the head of the Laboratory of Thermomechanical Metallurgy.
Daniele MariDaniele Mari was born in Milan in 1961, After a scientific high school degree obatained in Italy Daniele Mari joins EPFL in 1980 and graduates in Physics in 1986. In 1991, he obtains the Ph.D. from the same institution working in the field of metal-ceramic composites. From 1992 to 1993 he continues his research as a post-doc at the Massachusetts Institute of Technology with a work on shape-memory alloys. In 1993, he joins the company Amysa Yverdon SA (Switzerland) as director of Research and Development and creates ACME (Advanced Composite & Microwave Engineering) with activities in the fields of the electromagnetic heating and materials science. In parallel with his industrial activities, D. Mari has supervised different research projects in materials science at the EPFL. In 2004 he joins the Laboratoire de Physique de la Matière Complexe to develop mechanical spectroscopy in the field of hard materials and steels. He is appointed MER in 2012. Since then he is responsible for the Physics Laboratories (for student training) and Auditoriums. Since 2013 D. Mari is the Deputy Director of the Physics School.
Jean-Marie Drezet1992-1996: travail de thèse au Laboratoire de Métallurgie Physique sous la direction du Prof. Michel Rappaz, http://library.epfl.ch/theses/?display=detail&nr=1509 1997-2000: projet EMPACT (European Modelling Programme for Aluminium Casting Technologies) 2001-2004: projet VIRCAST (European Virtual Casting) 2005-2006: projet Etude du sciage des barres à laminer (Alcan Fonds) 2005-2006: projet WelAIR (Welding of Airframes, EADS) 2005-2008: soudage faisceau d'électrons des Cu-Cr-Zr (CEA, France) 2006-2008: soudage laser des Al-Li (EADS, France) 2008-2011: co-direction avec le Prof. A. Nussbaumer de la thèse de C. Acevedo sur l'influence des contraintes residuelles sur le desgin en fatigue des joints tubulaires soudés, http://library.epfl.ch/theses/?nr=5056 2007-2011: co-direction avec le Prof. J.-F. Molinari de la thèse de K. Shahim sur la dilatation ventriculaire dans l'hydrocéphalie à pression normale (S. Momjian, HU-Genève et R. Sinkus, ESPCI-Paris), http://library.epfl.ch/theses/?nr=5191 2008-2012: co-direction avec le Prof. M. Rappaz de la thèse de M. Sistaninia sur la simulation de la fissuration par modèles granulaires (Projet CCMX-MERU) 2010-2014: direction avec le Prof. M. Rappaz de la thèse de N. Chobaut sur la simulation des contraintes lors de la trempe de pièces épaisses en alliage d'aluminium à durcissement structural (Projet CCMX-MERU) 2011-2015: direction avec le Prof. H. Van Swygenhoven-Moens de la thèse de P. Schloth sur l'étude de la précipitation lors de la trempe de pièces épaisses en alliage d'aluminium à durcissement structural (Projet CCMX-MERU) Yves BellouardDr. Yves Bellouard is Associate Professor in Microengineering at Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, where he heads the Galatea lab and the Richemont Chair in micromanufacturing. He received a BS in Theoretical Physics and a MS in Applied Physics from Université Pierre et Marie Curie in Paris, France in 1994-1995 and a PhD in Microengineering from Ecole Polytechnique Fédérale de Lausanne (EPFL) in Lausanne, Switzerland in 2000. For his PhD work, he received the Omega Scientific prize (2001) for outstanding contribution in the field of microengineering for his work on Shape Memory Alloys. Before joining EPFL in 2015, he was Associate Professor at Eindhoven University of Technologies (TU/e) in the Netherlands and prior to that, Research Scientist at Rensselaer Polytechnic Institute (RPI) in Troy, New York for about four years where he started working on femtosecond laser processing of glass materials. From 2010 until 2013, Yves Bellouard initiated and coordinated the Femtoprint project, a European research initiative aiming at investigating a table-top printer for microsystems ('3D printing of microsystems'). In 2013, he received a prestigious ERC Starting Grant (Consolidator-2012) from the European Research Council and a JSPS Fellowship from the Japan Society for the Promotion of Science. His current research interests are on new paradigms for system integration at the microscale and in particular laser-based methods to tailor material properties for achieving higher level of integration in microsystems, like for instance integrating optics, mechanics and fluidics in a single monolith. These approaches open new opportunities for direct-write methods of microsystems (3D printing). Personal website