In seismology, an aftershock is a smaller earthquake that follows a larger earthquake, in the same area of the main shock, caused as the displaced crust adjusts to the effects of the main shock. Large earthquakes can have hundreds to thousands of instrumentally detectable aftershocks, which steadily decrease in magnitude and frequency according to a consistent pattern. In some earthquakes the main rupture happens in two or more steps, resulting in multiple main shocks. These are known as doublet earthquakes, and in general can be distinguished from aftershocks in having similar magnitudes and nearly identical seismic waveforms. Most aftershocks are located over the full area of fault rupture and either occur along the fault plane itself or along other faults within the volume affected by the strain associated with the main shock. Typically, aftershocks are found up to a distance equal to the rupture length away from the fault plane. The pattern of aftershocks helps confirm the size of area that slipped during the main shock. In the case of the 2004 Indian Ocean earthquake and the 2008 Sichuan earthquake the aftershock distribution shows in both cases that the epicenter (where the rupture initiated) lies to one end of the final area of slip, implying strongly asymmetric rupture propagation. Aftershocks rates and magnitudes follow several well-established empirical laws. The frequency of aftershocks decreases roughly with the reciprocal of time after the main shock. This empirical relation was first described by Fusakichi Omori in 1894 and is known as Omori's law. It is expressed as where k and c are constants, which vary between earthquake sequences. A modified version of Omori's law, now commonly used, was proposed by Utsu in 1961. where p is a third constant which modifies the decay rate and typically falls in the range 0.7–1.5. According to these equations, the rate of aftershocks decreases quickly with time. The rate of aftershocks is proportional to the inverse of time since the mainshock and this relationship can be used to estimate the probability of future aftershock occurrence.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (1)
Dynamique de propagation de fissures dans les bimatériaux et les gels
Explore la dynamique de propagation des fissures dans les bimatériaux, les failles et les avalanches, ainsi que l'instabilité des microbranches dans les gels et le verre.
Publications associées (22)
Concepts associés (4)
Foreshock
A foreshock is an earthquake that occurs before a larger seismic event (the mainshock) and is related to it in both time and space. The designation of an earthquake as foreshock, mainshock or aftershock is only possible after the full sequence of events has happened. Foreshock activity has been detected for about 40% of all moderate to large earthquakes, and about 70% for events of M>7.0.
Prédiction sismique
L'objectif de la prédiction sismique est d'anticiper les risques sismiques en prévoyant l'amplitude, le lieu et la date des tremblements de terre. On peut distinguer trois types de prévision sismique : la prévision à long terme (sur plusieurs années), à moyen terme (sur plusieurs mois) et à court terme (inférieur à quelques jours). La prédiction sismique reste une tâche difficile et aléatoire, voire quasi impossible malgré les efforts scientifiques. De plus prévoir les dégâts ne les empêcherait pas d'avoir lieu.
Séisme
vignette|upright=1.5|Carte de la répartition mondiale des séismes en 2010, montrant leur distribution essentiellement le long des frontières des grandes plaques tectoniques (dorsales dans les océans, ceinture de feu du Pacifique et ceinture alpine sur les continents). Un séisme ou tremblement de terre est une secousse du sol résultant de la libération brusque d'énergie accumulée par les contraintes exercées sur les roches. Cette libération d'énergie se fait par rupture le long d'une faille, généralement préexistante.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.