En théorie des probabilités, la loi de Slash est la loi de probabilité d'une variable aléatoire de loi normale divisée par une variable aléatoire de loi uniforme continue. En d'autres termes, si est une variable normale centrée réduite (moyenne est nulle et la variance vaut 1), si est uniforme sur et si et sont indépendantes alors la variable suit une loi de Slash. Cette loi a été nommée ainsi par et John Tukey dans un article publié en 1972. Sa fonction de densité est donnée par où est la fonction de densité d'une loi normale centrée réduite. Elle n'est pas définie pour , mais cette valeur interdite est remplacée par : L'utilisation la plus commune de la loi de Slash est dans l'étude de simulations. Cette loi possède une queue plus lourde que la loi normale mais n'est cependant pas pathologique comme la loi de Cauchy.
Simon Crelier, Michael Amrhein
Dominique Bonvin, Michael Amrhein, Pamandeep Singh Gujral