Concept

Loi de Slash

En théorie des probabilités, la loi de Slash est la loi de probabilité d'une variable aléatoire de loi normale divisée par une variable aléatoire de loi uniforme continue. En d'autres termes, si est une variable normale centrée réduite (moyenne est nulle et la variance vaut 1), si est uniforme sur et si et sont indépendantes alors la variable suit une loi de Slash. Cette loi a été nommée ainsi par et John Tukey dans un article publié en 1972. Sa fonction de densité est donnée par où est la fonction de densité d'une loi normale centrée réduite. Elle n'est pas définie pour , mais cette valeur interdite est remplacée par : L'utilisation la plus commune de la loi de Slash est dans l'étude de simulations. Cette loi possède une queue plus lourde que la loi normale mais n'est cependant pas pathologique comme la loi de Cauchy.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.