Résumé
alt=|vignette|Un schéma montrant l'émission d'électrons depuis une plaque métallique. L'émission de chaque électron (particules rouges) requiert une quantité minimale d'énergie, laquelle est apportée par un photon (ondulations bleues). En physique, l'effet photoélectrique (EPE) désigne en premier lieu l'émission d'électrons par un matériau sous l'action de la lumière. Par extension, il regroupe l'ensemble des phénomènes électriques dans un matériau sous l'effet de la lumière. On distingue alors deux effets : l'éjection d'électrons hors du matériau (émission photoélectrique) et la modification de la conductivité de ce matériau (photoconductivité, effet photovoltaïque lorsqu'il est en œuvre au sein d'une cellule photovoltaïque, effet photoélectrochimique, effet photorésistif). Lorsque l'EPE se manifeste, toute l'énergie du photon incident se transmet à l'électron des couches profondes. Une quantité d'énergie minimale est nécessaire pour extraire l'électron de l'atome, l'énergie excédentaire est transmise à l'électron sous forme d'énergie cinétique. Une absorption partielle est caractérisée par la diffusion Compton. En 1839, Antoine Becquerel et son fils Alexandre Edmond présentent pour la première fois un effet photoélectrique. Leur expérience permet d'observer le comportement électrique d'électrodes immergées dans un liquide, modifié par un éclairage. La découverte de l'effet photoélectrique est attribuée à Heinrich Hertz (-) en . Il publia les résultats dans la revue scientifique Annalen der Physik. Grâce à l'effet photoélectrique, il est alors devenu possible d'obtenir des rayons cathodiques de faible énergie cinétique (ce qui sera interprété ensuite comme un faisceau d'électrons « lents » ) pour étudier la propagation dans le vide ; rayons que, par commutation d'un champ électrique, on pouvait réfracter ou ralentir à volonté, au point d'annihiler, voire de réfléchir le rayon. Ces nouvelles possibilités eurent bientôt une multitude d'applications techniques, comme le redressement du courant alternatif, l'amplification de signaux faibles en TSF ou la génération d'ondes porteuses non atténuées dans l'émission radio (1913).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (14)
Concepts associés (144)
Effet photoélectrique
alt=|vignette|Un schéma montrant l'émission d'électrons depuis une plaque métallique. L'émission de chaque électron (particules rouges) requiert une quantité minimale d'énergie, laquelle est apportée par un photon (ondulations bleues). En physique, l'effet photoélectrique (EPE) désigne en premier lieu l'émission d'électrons par un matériau sous l'action de la lumière. Par extension, il regroupe l'ensemble des phénomènes électriques dans un matériau sous l'effet de la lumière.
Mécanique quantique
La mécanique quantique est la branche de la physique théorique qui a succédé à la théorie des quanta et à la mécanique ondulatoire pour étudier et décrire les phénomènes fondamentaux à l'œuvre dans les systèmes physiques, plus particulièrement à l'échelle atomique et subatomique. Elle fut développée dans les années 1920 par une dizaine de physiciens européens, pour résoudre des problèmes que la physique classique échouait à expliquer, comme le rayonnement du corps noir, l'effet photo-électrique, ou l'existence des raies spectrales.
Rayon X
vignette|upright|Une des premières radiographies, prise par Wilhelm Röntgen. alt=Rayon X des poumons humains|vignette|189x189px|Rayon X des poumons humains. Les rayons X sont une forme de rayonnement électromagnétique à haute fréquence constitué de photons dont l'énergie varie d'une centaine d'eV (électron-volt), à plusieurs MeV. Ce rayonnement a été découvert en 1895 par le physicien allemand Wilhelm Röntgen, qui a reçu pour cela le premier prix Nobel de physique ; il lui donna le nom habituel de l'inconnue en mathématiques, X.
Afficher plus
Cours associés (30)
MSE-351: Surface analysis
The course treats the main surface analysis methods for the characterization of surfaces, interfaces and thin films. It discusses how these methods can be applied to gain specific knowledge about stru
PHYS-206: Physics IV
Wave physics, Introduction to quantum mechanics.
PHYS-636: General aspects of the electronic structure of crystals
The course is aimed at giving a general understanding and building a feeling of what electronic states inside a crystal are.
Afficher plus
Séances de cours associées (110)
Session de révision: Constantes et équations
Couvre les constantes fondamentales, les équations clés, les niveaux d'énergie, l'énergie photonique, la structure atomique, et plus encore.
Faisceaux continus: charge de conception et comportement
Couvre le calcul de la charge de conception pour les poutres continues et explore le comportement des poutres.
Concepts de base des photons et des rayons X
Couvre la dualité ondulatoire de la lumière, la diffusion Compton, l'effet photoélectrique, l'électronvolt et le spectre électromagnétique.
Afficher plus
MOOCs associés (3)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 2)
The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.
The Radio Sky I: Science and Observations
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.