Electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typically denoted as either or . The density is determined, through definition, by the normalised -electron wavefunction which itself depends upon variables ( spatial and spin coordinates). Conversely, the density determines the wave function modulo up to a phase factor, providing the formal foundation of density functional theory. According to quantum mechanics, due to the uncertainty principle on an atomic scale the exact location of an electron cannot be predicted, only the probability of its being at a given position; therefore electrons in atoms and molecules act as if they are "smeared out" in space. For one-electron systems, the electron density at any point is proportional to the square magnitude of the wavefunction. The electronic density corresponding to a normalised -electron wavefunction (with and denoting spatial and spin variables respectively) is defined as where the operator corresponding to the density observable is Computing as defined above we can simplify the expression as follows. In words: holding a single electron still in position we sum over all possible arrangements of the other electrons. The factor N arises since all electrons are indistinguishable, and hence all the integrals evaluate to the same value. In Hartree–Fock and density functional theories, the wave function is typically represented as a single Slater determinant constructed from orbitals, , with corresponding occupations . In these situations, the density simplifies to From its definition, the electron density is a non-negative function integrating to the total number of electrons. Further, for a system with kinetic energy T, the density satisfies the inequalities For finite kinetic energies, the first (stronger) inequality places the square root of the density in the Sobolev space .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (17)
CH-353: Introduction to electronic structure methods
Repetition of the basic concepts of quantum mechanics and main numerical algorithms used for practical implementions. Basic principles of electronic structure methods:Hartree-Fock, many body perturbat
CH-452: Computational methods in molecular quantum mechanics
This course will discuss the main methods for the simulation of quantum time dependent properties for molecular systems. Basic notions of density functional theory will be covered. An introduction to
MSE-468: Atomistic and quantum simulations of materials
Theory and application of quantum simulations to model, understand, and predict the properties of real materials.
Afficher plus
Séances de cours associées (56)
Interféromètre Mach-Zehnder
Explore l'interféromètre Mach-Zehnder, les matrices de densité et les probabilités de détection dans les systèmes quantiques.
Comprendre la densité électronique
Explore la densité électronique en chimie, des modèles atomiques aux applications d'apprentissage automatique et aux implications pour les propriétés moléculaires et la conception de médicaments.
Chimie générale avancée I
Explore la quantification des niveaux d'énergie, de la dualité des particules d'onde et du principe d'incertitude dans la chimie générale avancée.
Afficher plus
Publications associées (560)

Encoding quantum-chemical knowledge into machine-learning models of complex molecular properties

Ksenia Briling

Statistical (machine-learning, ML) models are more and more often used in computational chemistry as a substitute to more expensive ab initio and parametrizable methods. While the ML algorithms are capable of learning physical laws implicitly from data, ad ...
EPFL2024

Multi-machine benchmark of the self-consistent 1D scrape-off layer model DIV1D from stagnation point to target with SOLPS-ITER

Holger Reimerdes

This paper extends a 1D dynamic physics-based model of the scrape-off layer (SOL) plasma, DIV1D, to include the core SOL and possibly a second target. The extended model is benchmarked on 1D mapped SOLPS-ITER simulations to find input settings for DIV1D th ...
Bristol2024

Orbital-Resolved DFT plus U for Molecules and Solids

Nicola Marzari, Iurii Timrov, Eric Macke

We present an orbital-resolved extension of the Hubbard U correction to density-functional theory (DFT). Compared to the conventional shell-averaged approach, the prediction of energetic, electronic and structural properties is strongly improved, particula ...
Amer Chemical Soc2024
Afficher plus
Concepts associés (16)
Hybridation (chimie)
En chimie quantique, l'hybridation des orbitales atomiques est le mélange des orbitales atomiques d'un atome appartenant à la même couche électronique de manière à former de nouvelles orbitales qui permettent de mieux décrire qualitativement les liaisons entre atomes. Les orbitales hybrides sont très utiles pour expliquer la forme des orbitales moléculaires. Bien que parfois enseignées avec la théorie VSEPR (Valence Shell Electron Pair Repulsion), liaison de valence et hybridation sont en fait indépendantes du VSEPR.
Mésomérie
En chimie, la mésomérie désigne une délocalisation d'électrons dans les molécules conjuguées, que l'on représente par une combinaison virtuelle de structures aux électrons localisés appelées mésomères ou formes de résonance. Faute de moyens graphiques plus simples pour les décrire correctement, la mésomérie est donc une représentation simplifiée des systèmes moléculaires, qui sont plus précisément décrits par des approches de chimie quantique. Le terme « mésomérie » est dû à Ingold.
Théorie de la fonctionnelle de la densité
La théorie de la fonctionnelle de la densité (DFT, sigle pour Density Functional Theory) est une méthode de calcul quantique permettant l'étude de la structure électronique, en principe de manière exacte. Au début du , il s'agit de l'une des méthodes les plus utilisées dans les calculs quantiques aussi bien en physique de la matière condensée qu'en chimie quantique en raison de son application possible à des systèmes de tailles très variées, allant de quelques atomes à plusieurs centaines.
Afficher plus
MOOCs associés (7)
Plasma Physics and Applications [retired]
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.